精英家教网 > 高中数学 > 题目详情

已知函数
(Ⅰ)当时,求曲线在原点处的切线方程;
(Ⅱ)当时,讨论函数在区间上的单调性;
(Ⅲ)证明不等式对任意成立.

(Ⅰ)
(Ⅱ)函数在区间单调递减,在区间上单调递增.
(Ⅲ)由(Ⅱ)知,当时,在区间上单调递增;
从而可得
得到对任意成立.
通过取,得
将上述n个不等式求和,得到:
证得对任意成立.

解析试题分析:(Ⅰ)首先求,切线的斜率,求得切线方程.
(Ⅱ)当时,根据,只要考查的分子的符号.
通过讨论,得在区间上单调递增;
时,令求得其根. 利用“表解法”得出结论:函数在区间单调递减,在区间上单调递增.
(Ⅲ)由(Ⅱ)知,当时,在区间上单调递增;
从而可得
得到对任意成立.
通过取,得
将上述n个不等式求和,得到:
证得对任意成立.
试题解析:
(Ⅰ)当时,,切线的斜率
所以切线方程为,即.       3分
(Ⅱ)当时,因为,所以只要考查的符号.
,得
时,,从而在区间上单调递增;
时,由解得.  6分
变化时,的变化情况如下表:

函数在区间单调递减,在区间上单调递增. 9分
(Ⅲ)由(Ⅱ)知,当时,在区间上单调递增;
所以
对任意成立.      11分

,即.  13分
将上述n个不等式求和,得到:
即不等式对任意成立.   14分
考点:1、导数的几何意义,2、

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)当时,画出函数的简图,并指出的单调递减区间;
(2)若函数有4个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设二次函数在区间上的最大值、最小值分别是,集合
(Ⅰ)若,且,求的值;
(Ⅱ)若,且,记,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)不等式对一切R恒成立,求实数的取值范围;
(2)已知是定义在上的奇函数,当时,,求的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义域为的奇函数满足,且当时,
(Ⅰ)求上的解析式;
(Ⅱ)当取何值时,方程上有解?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

,其中是常数,且
(1)求函数的极值;
(2)证明:对任意正数,存在正数,使不等式成立;
(3)设,且,证明:对任意正数都有:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数y=
(Ⅰ)求函数y的最小正周期;
(Ⅱ)求函数y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=-2alnx(a>0)
(I)求函数f(x)的单调区间和最小值.
(II)若方程f(x)=2ax有唯一解,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f (x)=x3(1-a)x2-3ax+1,a>0.
(Ⅰ) 证明:对于正数a,存在正数p,使得当x∈[0,p]时,有-1≤f (x)≤1;
(Ⅱ) 设(Ⅰ)中的p的最大值为g(a),求g(a)的最大值.

查看答案和解析>>

同步练习册答案