精英家教网 > 高中数学 > 题目详情
(2012•商丘三模)已知不等式2|x-3|+|x-4|<2a.
(Ⅰ)若a=1,求不等式的解集;
(Ⅱ)若已知不等式的解集不是空集,求a的取值范围.
分析:(Ⅰ)对于不等式 2|x-3|+|x-4|<2,分x≥4、3<x<4、x≤3三种情况分别求出解集,再取并集,即得所求.
(Ⅱ)化简f(x)的解析式,求出f(x)的最小值,要使不等式的解集不是空集,2a大于f(x)的最小值,由此求得a的取值范围.
解答:解:(Ⅰ)对于不等式 2|x-3|+|x-4|<2,
①若x≥4,则3x-10<2,x<4,∴舍去.
②若3<x<4,则x-2<2,∴3<x<4.
③若x≤3,则10-3x<2,∴
8
3
<x≤3.
综上,不等式的解集为{x|
8
3
<x<4}
. …(5分)
(Ⅱ)设f(x)=2|x-3|+|x-4|,则f(x)=
3x-10 , x≥4
x-2 , 3<x<4
10-3x , x≤3
,∴f(x)≥1.
要使不等式的解集不是空集,2a大于f(x)的最小值,
故 2a>1,∴a>
1
2

即a的取值范围(
1
2
,+∞).  …(10分)
点评:本题主要考查绝对值不等式的解法,体现了分类讨论以及转化的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•商丘三模)已知等比数列{an}的前n项和Sn=2n+m(m∈R).
(Ⅰ)求m的值及{an}的通项公式;
(Ⅱ)设bn=2log2an-13,数列{bn}的前n项和为Tn,求使Tn最小时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知椭圆M:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
2
2
3
,且椭圆上一点与椭圆的两个焦点构成的三角形的周长为6+4
2

(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:x=ky+m与椭圆M交手A,B两点,若以AB为直径的圆经过椭圆的右顶点C,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•商丘三模)已知实数x,y满足
x-y≤1
x≥
1
2
2x+y≤4
,则x-3y的最大值为
2
2

查看答案和解析>>

同步练习册答案