精英家教网 > 高中数学 > 题目详情

【题目】某食品厂为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取40件产品作为样本,并称出它们的重量(单位:克),重量值落在内的产品为合格品,否则为不合格品,统计结果如表:

(Ⅰ)求甲流水线样本合格的频率;

(Ⅱ)从乙流水线上重量值落在内的产品中任取2个产品,求这2件产品中恰好只有一件合格的概率.

【答案】(Ⅰ)0.75; (Ⅱ).

【解析】试题分析:Ⅰ)首先计算落在的频数,频数除以样本容量就是频率;(Ⅱ根据频率分布直方图计算的频数,并且对产品编号,列举任选两件的基本事件,和恰有一件合格的基本事件的个数,计算其概率.

试题解析:(Ⅰ)由表知甲流水线样本中合格品数为

故甲流水线样本中合格品的频率为

(Ⅱ)乙流水线上重量值落在内的合格产品件数为

不合格产品件数为

设合格产品的编号为 ,不合格产品的编号为

抽取2件产品的基本事件空间为 共15个. 

表示“2件产品恰好只有一件合格”这一基本事件,则 共8个,

故所求概率

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数f(x)=log4(4x+1)+ax(a∈R).
(1)若函数f(x)是定义在R上的偶函数,求a的值;
(2)若不等式f(x)+f(﹣x)≥mt+m对任意x∈R,t∈[﹣2,1]恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知不等式对一切都成立,则的最小值是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

为庆祝“2017年中国长春国际马拉松赛”,某单位在庆祝晚会中进行嘉宾现场抽奖活动.抽奖盒中装有大小相同的6个小球,分别印有“长春马拉松”和“美丽长春”两种标志,摇匀后,规定参加者每次从盒中同时抽取两个小球(登记后放回并摇匀),若抽到的两个小球都印有“长春马拉松”即可中奖,并停止抽奖,否则继续,但每位嘉宾最多抽取3次.已知从盒中抽取两个小球不都是“美丽长春”标志的概率为.

(Ⅰ)求盒中印有“长春马拉松”标志的小球个数;

(Ⅱ)用η表示某位嘉宾抽奖的次数,求η的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体ABCD﹣A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF= ,给出下列结论:
(1)AC⊥BE;
(2)EF∥平面ABCD;
(3)三棱锥A﹣BEF的体积为定值;
(4)异面直线AE,BF所成的角为定值.
其中错误的结论有( )

A.0个
B.1 个
C.2个
D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】王府井百货分店今年春节期间,消费达到一定标准的顾客可进行一次抽奖活动,随着抽奖活动的有效开展,参与抽奖活动的人数越来越多,该分店经理对春节前7天参加抽奖活动的人数进行统计, 表示第天参加抽奖活动的人数,得到统计表格如下:

1

2

3

4

5

6

7

5

8

8

10

14

15

17

经过进一步统计分析,发现具有线性相关关系.

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)判断变量之间是正相关还是负相关;

(3)若该活动只持续10天,估计共有多少名顾客参加抽奖.

参与公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知),,其中为自然对数的底数.

(1)若恒成立,求实数的取值范围;

(2)若在(1)的条件下,当取最大值时,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对应的边分别为a,b,c,sinC+sin(A﹣B)=3sin2B.若 ,则 =(
A.
B.3
C. 或3
D.3或

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(1)证明:当时,

(2)若不等式对任意的正实数恒成立,求正实数的取值范围;

(3)求证: .

查看答案和解析>>

同步练习册答案