精英家教网 > 高中数学 > 题目详情
14.点P(-1,0)在动直线2ax+(a+c) y+2c=0(a∈R,c∈R)上射影为M,则点M到直线 x-y=5的距离的最大值是3$\sqrt{2}$.

分析 变形直线方程由直线系可得定点A,可得动点M的轨迹为以AP为直径的圆上,数形结合可得.

解答 解:由2ax+(a+c)y+2c=0,得a(2x+y)+c(y+2)=0,
联立2x+y=0和y+2=0可得x=1且y=-2,
∴动直线恒过定A点(1,-2),
∴动点M的轨迹为以AP为直径的圆B:x2+(y+1)2=2,
∴点M到直线 x-y=5的距离的最大值为圆心(0,-1)
到直线x-y=5的距离加上圆B的半径$\sqrt{2}$,
计算可得$\frac{|0-(-1)-5|}{\sqrt{{1}^{2}+(-1)^{2}}}$+$\sqrt{2}$=3$\sqrt{2}$
故答案为:3$\sqrt{2}$

点评 本题考查过直线交点的直线系方程,涉及点到直线的距离公式和圆的方程,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.复数z=$\frac{1+i}{i}$(i是虚数单位)的共轭复数在复平面内对应的点是(  )
A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知集合A={x|x2-(2a+1)x+(a-1)(a+2)≤0},$B=\left\{{\left.x\right|\frac{5}{x-2}≥1,x∈R}\right\}$.
(1)求集合B;          
(2)若A∪B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中既不是奇函数也不是偶函数的是(  )
A.y=$\sqrt{{x}^{2}-2}$B.y=ln(x+$\sqrt{{x}^{2}+1}$)C.y=x-exD.y=$\frac{{e}^{2x}-1}{{e}^{x}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)的定义域为R且f(x)=$\left\{\begin{array}{l}{{x}^{2}+2,x∈[0,1]}\\{2-{x}^{2},x∈(-1,0)}\end{array}\right.$,f(x+1)=f(x-1),则方程f(x)=$\frac{2x+1}{x}$在区间[-3,3]的所有实根之和为(  )
A.-8B.-2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.满足线性约束条件$\left\{\begin{array}{l}{2x+y≤3}\\{x+2y≤3}\\{x≥0,y≥0}\end{array}\right.$的目标函数x+3y的最大值是(  )
A.$\frac{9}{2}$B.$\frac{3}{2}$C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知A为不等式组$\left\{\begin{array}{l}x≤0\\ y≥0\\ y-x≤2\end{array}\right.$表示的平面区域,则当a从-1连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.长方体ABCD-A1B1C1D1中,高DD1=4cm,.底面是边长为3cm的正方形,求对角线D1B与底而ABCD所成角的大小(精确列1′)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数y=($\frac{2}{3}$)x,当x∈(0,+∞)时,y的取值范围是(  )
A.(0,$\frac{2}{3}$)B.(0,+∞)C.(0,1)D.(1,+∞)

查看答案和解析>>

同步练习册答案