精英家教网 > 高中数学 > 题目详情

【题目】已知函数)的图象为曲线

)求曲线上任意一点处的切线的斜率的取值范围;

)若曲线上存在两点处的切线互相垂直,求其中一条切线与曲线的切点的横坐标的取值范围;

)试问:是否存在一条直线与曲线C同时切于两个不同点?如果存在,求出符合条件的所有直线方程;若不存在,说明理由.

【答案】(1)(2)(3) 不存在一条直线与曲线C同时切于两点

【解析】

试题解:(,则

即曲线上任意一点处的切线的斜率的取值范围是

)由(1)可知,

解得,由

得:

)设存在过点A的切线曲线C同时切于两点,另一切点为B

则切线方程是:

化简得:

而过B的切线方程是

由于两切线是同一直线,

则有:,得

又由

,即

,但当时,由,这与矛盾.

所以不存在一条直线与曲线C同时切于两点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某公司组织开展学习强国的学习活动,活动第一周甲、乙两个部门员工的学习情况统计如下:

学习活跃的员工人数

学习不活跃的员工人数

18

12

32

8

1)从甲、乙两个部门所有员工中随机抽取1人,求该员工学习活跃的概率;

2)根据表中数据判断能否有的把握认为员工学习是否活跃与部门有关;

3)活动第二周,公司为检查学习情况,从乙部门随机抽取2人,发现这两人学习都不活跃,能否认为乙部门第二周学习的活跃率比第一周降低了?

参考公式:,其中.

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为

1)求曲线C的普通方程;

2)直线l的参数方程为,(t为参数),直线lx轴交于点F,与曲线C的交点为AB,当取最小值时,求直线l的直角坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4—5: 不等式选讲

已知函数f(x) 的定义域为R.

()求实数m的取值范围;

()m的最大值为n,当正数ab满足 n时,求7a4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCDA1B1C1D1中,已知底面ABCD是菱形,点P是侧棱C1C的中点.

1)求证:AC1∥平面PBD

2)求证:BDA1P

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的零点个数为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某海滨养殖场有一块可用水城,该养殖场用隔离网把该水域分为两个部分,其中百米,现计划过处再修建一条直线型隔离网,其端点分别在上,记为

1)若要使得所围区域面积不大于平方百米,求的取值范围:

2)若要在区域内养殖鱼类甲,区域内养殖鱼类乙,已知鱼类甲的养殖成本是万元/平方百米,鱼类乙的养殖成本是万元/平方百米.试确定的值,使得养殖成本最小,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的离心率为,以原点为圆心,椭圆短半轴长为半径的圆与直线相切.

1)求椭圆的方程;

2MN是椭圆上关于x轴对称的两点,P是椭圆上不同于MN的一点,直线PMPNx轴于DxD0ExE0),证明:xDxE为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ24ρsinθ)=0

1)求曲线C的直角坐标方程;

2)若直线l的参数方程是α为参数),且α∈(π)时,直线l与曲线C有且只有一个交点P,求点P的极径.

查看答案和解析>>

同步练习册答案