【题目】等比数列{an}共有奇数项,所有奇数项和S奇=255,所有偶数项和S偶=﹣126,末项是192,则首项a1=( )
A.1
B.2
C.3
D.4
【答案】C
【解析】解:设等比数列有2n+1项,则奇数项有n+1项,偶数项有n项,设公比为q, 得到奇数项为奇数项为a1(1+q2+q4+…+q2n)=255,偶数项为a1(q+q3+q5+…+q2n﹣1)=﹣126,
所以qa1(1+q2+q4+…+q2n)=255q,即a1(q+q3+q5+…+q2n﹣1)+qa2n+1=255q,
可得:﹣126+192q=255q,解得q=﹣2.
所以所有奇数项和S奇=255,末项是192, = =255,即:
解得n=3.是共有7项,a7=a1(﹣ )6 , 解得a1=3.
故选:C.
【考点精析】解答此题的关键在于理解等比数列的基本性质的相关知识,掌握{an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列.
科目:高中数学 来源: 题型:
【题目】如图,边长为2的正方形ABCD所在平面与三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求证:AB∥平面CDE;
(2)求证:DE⊥平面ABE;
(3)求点A到平面BDE的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0;命题q:实数x满足x2﹣5x+6≤0
(1)若a=1,且q∧p为真,求实数x的取值范围;
(2)若p是q必要不充分条件,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在等差数列{an}中,a1=1,又a1 , a2 , a5成公比不为1的等比数列. (Ⅰ)求数列{an}的公差;
(Ⅱ)设bn= ,求数列{bn}的前n项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:k2﹣8k﹣20≤0,命题q:方程 =1表示焦点在x轴上的双曲线. (Ⅰ)命题q为真命题,求实数k的取值范围;
(Ⅱ)若命题“p∨q”为真,命题“p∧q”为假,求实数k的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com