精英家教网 > 高中数学 > 题目详情
设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线与抛物线y=x2+1相切,则该双曲线的离心率等于(  )
A、
3
B、
6
C、
5
D、2
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出双曲线的渐近线方程,代入抛物线方程,运用相切的条件:判别式为0,解方程,可得a,b的关系,再由双曲线的a,b,c的关系和离心率公式,计算即可得到.
解答: 解:双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的渐近线方程为y=±
b
a
x,
代入抛物线方程y=x2+1,
得x2±
b
a
x+1=0,
由相切的条件可得,判别式
b2
a2
-4=0,
即有b=2a,则c=
a2+b2
=
4a2+a2
=
5
a,
则有e=
c
a
=
5

故选C.
点评:本题考查双曲线的方程和性质,考查离心率的求法,考查直线和曲线相切的条件,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设集合A={x|y=lg(x-1)},B={y|y=2x,x∈R},则A∪B=(  )
A、∅B、R
C、(1,+∞)D、(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三个数x-a,x,x+a,若f(x)=f(x+a)+f(x-a),则f(x)的一个周期T=
 

注:f(x)=f(x+a)+f(x-a)?f(x+3a)+f(x)=0?f(x)=f(x+6a)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:正三棱椎三视图如下,求左视图表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x2ex-1-
1
3
x3-x2(x∈R).
(1)求函数f(x)的单调区间;
(2)当x∈(1,+∞)时,用数学归纳法证明:?n∈N*,ex-1
xn
n!
(其中n!=1×2×…×n).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-1)ex-kx2(k∈R),g(x)=alnx(a∈R).
(1)当a=1时,求y=xg(x)的单调增区间;
(2)若对?x∈[1,e],都有g(x)≥-x2+(a+2)x成立,求a的取值范围.
(3)当k∈(
3
4
,1]时,求f(x)在[0,k]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=mlnx+(m-1)x(m∈R).
(Ⅰ)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市要对两千多名出租车司机的年龄进行调查,现从中随机抽出100名司机,已知抽到的司机年龄都在[20,45)岁之间,根据调查结果得出司机的年龄情况残缺的频率分布直方图如图所示,利用这个残缺的频率分布直方图估计该市出租车司机年龄的中位数大约是
 
岁.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图(单位:cm)如图所示,则此几何体的侧视图面积为
 
cm2,此几何体的体积为
 
cm3

查看答案和解析>>

同步练习册答案