【题目】设数列{xn}的前n项和为Sn , 且4xn﹣Sn﹣3=0(n∈N*);
(1)求数列{xn}的通项公式;
(2)若数列{yn}满足yn+1﹣yn=xn(n∈N*),且y1=2,求满足不等式 的最小正整数n的值.
【答案】
(1)解:∵4xn﹣Sn﹣3=0(n∈N*),∴n=1时,4x1﹣x1﹣3=0,解得x1=1.
n≥2时,由Sn=4xn﹣3,∴xn=Sn﹣Sn﹣1=4xn﹣3﹣(4xn﹣1﹣3),∴xn= ,∴数列{xn},是等比数列,公比为 .
∴xn= .
(2)解:yn+1﹣yn=xn= ,且y1=2,
∴yn=y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn﹣1)
=2+1+ + +…+ =2+ =3× ﹣1.当n=1时也满足.
∴yn=3× ﹣1.
不等式 ,化为: = ,∴n﹣1>3,解得n>4.
∴满足不等式 的最小正整数n的值为5
【解析】(1)由4xn﹣Sn﹣3=0(n∈N*),可得n=1时,4x1﹣x1﹣3=0,解得x1 . n≥2时,由Sn=4xn﹣3,可得xn=Sn﹣Sn﹣1 , 利用等比数列的通项公式即可得出.(2)yn+1﹣yn=xn= ,且y1=2,利用yn=y1+(y2﹣y1)+(y3﹣y2)+…+(yn﹣yn﹣1)与等比数列的求和公式即可得出yn . 代入不等式 ,化简即可得出.
科目:高中数学 来源: 题型:
【题目】秦九韶是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为4,2,则输出v的值为( )
A.66
B.33
C.16
D.8
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 (a为常数,a≠0).
(1)当a=1时,求函数f(x)在点(3,f(3))的切线方程
(2)求f(x)的单调区间;
(3)若f(x)在x0处取得极值,且 ,而f(x)≥0在[e+2,e3+2]上恒成立,求实数a的取值范围.(其中e为自然对数的底数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足an+1=an﹣2an+1an , an≠0且a1=1
(1)求证:数列 是等差数列,并求出{an}的通项公式;
(2)令 ,求数列{bn}的前2n项的和T2n .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120人,则该样本中的高二学生人数为( )
A.80
B.96
C.108
D.110
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=2x﹣5,g(x)=4x﹣x2 , 给下列三个命题: p1:若x∈R,则f(x)f(﹣x)的最大值为16;
p2:不等式f(x)<g(x)的解集为集合{x|﹣1<x<3}的真子集;
p3:当a>0时,若x1 , x2∈[a,a+2],f(x1)≥g(x2)恒成立,则a≥3,
那么,这三个命题中所有的真命题是( )
A.p1 , p2 , p3
B.p2 , p3
C.p1 , p2
D.p1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立坐标系,直线l的参数方程为 ,(t为参数),曲线C1的方程为ρ(ρ﹣4sinθ)=12,定点A(6,0),点P是曲线C1上的动点,Q为AP的中点.
(1)求点Q的轨迹C2的直角坐标方程;
(2)直线l与直线C2交于M,N两点,若|MN|≥2 ,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,分别在x轴与直线 上从左向右依次取点Ak、Bk , k=1,2,…,其中A1是坐标原点,使△AkBkAk+1都是等边三角形,则△A10B10A11的边长是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com