【题目】已知函数f(x)=x3+sin x,x∈(-1,1),则满足f(a2-1)+f(a-1)>0的a的取值范围是( )
A. (0,2)B. (1,)C. (1,2)D. (0,)
科目:高中数学 来源: 题型:
【题目】已知抛物线过点(为非零常数)与轴不垂直的直线与C交于两点.
(1)求证:(是坐标原点);
(2)AB的垂直平分线与轴交于,求实数的取值范围;
(3)设A关于轴的对称点为D,求证:直线BD过定点,并求出定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,某市准备在道路EF的一侧修建一条运动比赛道,赛道的前一部分为曲线段FBC.该曲线段是函数时的图象,且图象的最高点为B赛道的中间部分为长千米的直线跑道CD,且CD∥EF;赛道的后一部分是以为圆心的一段圆弧DE.
(1)求的值和∠DOE的大小;
(2)若要在圆弧赛道所对应的扇形ODE区域内建一个“矩形草坪”,矩形的一边在道路EF上,一个顶点在半径OD上,另外一个顶点P在圆弧DE上,求“矩形草坪”面积的最大值,并求此时P点的位置.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙两人各进行次射击,甲每次击中目标的概率为,乙每次击中目标的概率,
(Ⅰ)记甲击中目标的次数为,求的概率分布及数学期望;
(Ⅱ)求甲恰好比乙多击中目标次的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. “”是“”成立的充分不必要条件
B. 命题,则
C. 为了了解800名学生对学校某项教改试验的意见,用系统抽样的方法从中抽取一个容量为40的样本,则分组的组距为40
D. 已知回归直线的斜率的估计值为1.23,样本点的中心为,则回归直线方程为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD为菱形且∠DAB=60°,O为AD中点.
(Ⅰ)若PA=PD,求证:平面POB⊥平面PAD;
(Ⅱ)若平面PAD⊥平面ABCD,且PA=PD=AD=2,试问在线段PC上是否存在点M,使二面角M-BO-C的大小为30°,如存在,求的值,如不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在上的函数满足:对任意的,当时,都有.
(1)若,求实数的取值范围;
(2)若为周期函数,证明:是常值函数;
(3)若在上满足:,,,
①记(),求数列的通项公式;② 求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方
向滚动,M和N是小圆的一条固定直径的两个端点.那么,当小圆这
样滚过大圆内壁的一周,点M,N在大圆内所绘出的图形大致是( )
A.B.
C.D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com