精英家教网 > 高中数学 > 题目详情
(本小题满分12分)
在正方体中,如图E、F分别是,CD的中点,
⑴求证:平面ADE;
⑵点到平面ADE的距离.      
  
(1)证明:建立如图所示的直角坐标系,不妨设正方体的棱长为1,

则D(0,0,0),A(1,0,0),(0,0,1),
E(1,1,),F(0,,0),
=(0,,-1),=(1,0,0),   
=(0,1,), 则=0,
=0, .   
平面ADE.
(2)(0,0,1),=(0,,-1)
由⑴知平面ADE的一个法向量为
所以点到平面ADE的距离=
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

本小题满分14分)如图,四棱锥E—ABCD中,ABCD是矩形,平面EAB平面ABCD,AE=EB=BC=2,F为CE上的点,
且BF平面ACE.
(1)求证:AEBE;
(2)求三棱锥D—AEC的体积;
(3)求二面角A—CD—E的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

. (本小题满分12分)
如图,四棱锥P-ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,已知AB=,∠APB=∠ADB=60°

(Ⅰ)证明:平面PAC⊥平面PBD;
(Ⅱ)求PH与平面PAD所成的角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
如图PA⊥平面ABCD,四边形ABCD是矩形,E、F分别是AB,PD的中点.
(1)求证:AF//平面PCE;
(2)若PA=AD且AD=2,CD=3,求P—CE—A的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本小题满分12分)
长方体ABCD—A1B1C1D1中,AD=AA1=1,AB=2,点E是AB上的点,若直线D1E与EC垂直

(I)求线段AE的长;
(II)求二面角D1—EC—D的大小;
(III)求A点到平面CD1E的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.如图,在四棱锥中,底面是矩形,平面分别是的中点.
(1)证明:平面
(2)求平面与平面夹角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P—ABCD的底面为矩形,PA=AD=1,PA⊥面ABCD,E是AB的中点,F为PC上一点,且EF//面PAD。

(I)证明:F为PC的中点;
(II)若二面角C—PD—E的平面角的余弦值为求直线ED与平面PCD所成的角

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题12分)
在长方体的中点。
(1)求直线 
(2)作

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两条不同直线,两个不同平面,给出下列命题:
①若垂直于内的两条相交直线,则
②若,则平行于内的所有直线;
③若,则
④若,则
⑤若,则
其中正确命题的序号是          .(把你认为正确命题的序号都填上)

查看答案和解析>>

同步练习册答案