精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面是以为中心的菱形,底面上一点,且

1)求的长;

2)求二面角的余弦值.

【答案】12

【解析】

1)建立空间直角坐标系,用坐标表示出,再根据垂直关系对应的向量数量积为零,即可计算出的坐标,从而可求的长度;

2)根据两个平面法向量夹角的余弦值,再结合几何体中二面角具体是钝角还是锐角,从而确定出二面角余弦值的大小.

解(1)如图,连接,因为菱形,

,且

为坐标原点,的方向分别为轴、轴、轴的正方向,建立空间直角坐标系

,故

所以

知,

从而,即

,则

因为,故

,所以 (舍去),即

2)由(1)知,

设平面的法向量为,平面的法向量为

,得故可取

,得故可取

从而法向量的夹角的余弦值为

故所求二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲同学参加化学竞赛初赛,考试分为笔试、口试、实验三个项目,各单项通过考试的概率依次为,笔试、口试、实验通过考试分别记4分、2分、4分,没通过的项目记0分,各项成绩互不影响.

(Ⅰ)若规定总分不低于8分即可进入复赛,求甲同学进入复赛的概率;

(Ⅱ)记三个项目中通过考试的个数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某市建有贯穿东西和南北的两条垂直公路,在它们交叉路口点处的东北方向建有一个荷花池,荷花池的外围是一条环形公路,荷花池中的固定观景台位于两条垂直公路的角平分线上,与环形公路的交点记作.游客游览荷花池时,需沿公路先到达环形公路.为了分流游客,方便游客游览荷花池,计划从靠近公路的环形公路上选两处(关于直线对称)修建直达观景台的玻璃栈道.以所在的直线为轴建立平面直角坐标系,靠近公路的环形公路可用曲线近似表示,曲线符合函数

1)若百米,点的垂直距离为1百米,求玻璃栈道的总长度;

2)若要使得玻璃栈道的总长度最小为百米,求观景台的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)讨论的单调性;

(2)若有两个极值点,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,平面ABCD是正三角形,ACBD的交点为M,又,点NCD中点.

1)求证:平面PAD

2)求点M到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金,保险公司把企业的所有岗位共分为三类工种,从事这三类工种的人数分别为12000,6000,2000,由历史数据统计出三类工种的赔付频率如下表(并以此估计赔付概率):

已知三类工种职工每人每年保费分别为25元、25元、40元,出险后的赔偿金额分别为100万元、100万元、50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.

(1)求保险公司在该业务所或利润的期望值;

(2)现有如下两个方案供企业选择:

方案1:企业不与保险公司合作,职工不交保险,出意外企业自行拿出与保险公司提供的等额赔偿金赔偿付给意外职工,企业开展这项工作的固定支出为每年12万元;

方案2:企业与保险公司合作,企业负责职工保费的70%,职工个人负责保费的30%,出险后赔偿金由保险公司赔付,企业无额外专项开支.

请根据企业成本差异给出选择合适方案的建议.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当 取得极值的值

(Ⅱ)当函数有两个极值点总有 成立的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是边长为2的菱形,,平面平面,点为棱的中点.

(Ⅰ)在棱上是否存在一点,使得平面,并说明理由;

(Ⅱ)当二面角的余弦值为时,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】基于移动网络技术的共享单车被称为“新四大发明”之一,短时间内就风靡全国,给人们带来新的出行体验,某共享单车运营公司的市场研究人员为了了解公司的经营状况,对公司最近6个月的市场占有率进行了统计,结果如下表:

月份

2018.11

2018.12

2019.01

2019.02

2019.03

2019.04

月份代码

1

2

3

4

5

6

11

13

16

15

20

21

(1)请用相关系数说明能否用线性回归模型拟合与月份代码之间的关系.如果能,请计算出关于的线性回归方程,如果不能,请说明理由;

(2)根据调研数据,公司决定再采购一批单车扩大市场,从成本1000元/辆的型车和800元/辆的型车中选购一种,两款单车使用寿命频数如下表:

车型 报废年限

1年

2年

3年

4年

总计

10

30

40

20

100

15

40

35

10

100

经测算,平均每辆单车每年能为公司带来500元的收入,不考虑除采购成本以外的其它成本,假设每辆单车的使用寿命都是整数年,用频率估计每辆车使用寿命的概率,以平均每辆单车所产生的利润的估计值为决策依据,如果你是公司负责人,会选择哪款车型?

参考数据:.

参考公式:相关系数.

查看答案和解析>>

同步练习册答案