试题分析:
(1)要证明
,只需要考虑证明AC垂直于BD所在的面,即
面ABD,所以证明AC与AD,AB垂直即可,而AE与AD在同一条直线上且AE垂直于AC所在的一个面,根据线面垂直的性质,即可得到AC与AD垂直,而AC与AB垂直题目已给,所以能证明AC与面BCD垂直,进而证明AC与BD垂直.
(2)首先根据题目所给正视图与侧视图的面积,求出三角形AOE的面积,得到AO的长,再根据OA等腰直角三颗星ABC斜边的中线,即可求出等腰直角三颗星三条边的长度,进而得到三角形的面积,根据正视图的面积为三角形AOE与矩形
的面积和
得到AD的长,而所求三棱锥的体积可以分为三棱
与
两个部分,两部分都以三角形ABC为底面,分别以AE与AD为高,且都已知,进而可以求出三棱锥
.
试题解析:
(1)证明:
面
(即
面ABC)且
面ABC
又
且
面ABD,
面ABD
面ABD
(2)因为正视图和侧视图的面积分别为11和12,所以
,又因为AE=2,所以OA=1,
,因为正视图的面积为11,所以
,因为底面三角形ABC为等腰直角三角形且斜边的中线OA=1,所以
,又因为
面ABC且
面ABC,所以
,综上
.