【题目】已知函数:f(x)=asin2x+cos2x且f( )= .
(1)求a的值和f(x)的最大值;
(2)求f(x)的单调减区间.
【答案】
(1)解:∵f( )=asin +cos
= ﹣ = .
∴a=1
f(x)=sin2x+cos2x= sin(2x+ )
∴函数f(x)的最大值为
(2)解:由2k (k∈Z)
得:k (k∈Z)
∴函数f(x)的单调减区间为[k ]
【解析】(1)把x= 代入函数f(x)的解析式即可求得a值,然后把f(x)的解析式利用两角和的正弦公式化成标准形式求f)x)的最大值;(2)根据正弦函数的单调减区间求函数f(x)的单调减区间.
【考点精析】根据题目的已知条件,利用正弦函数的单调性和三角函数的最值的相关知识可以得到问题的答案,需要掌握正弦函数的单调性:在上是增函数;在上是减函数;函数,当时,取得最小值为;当时,取得最大值为,则,,.
科目:高中数学 来源: 题型:
【题目】在三棱锥P﹣ABC中,PA⊥平面ABC,AB=BC=AC=2,PA= ,E,F分别是PB,BC的中点,则EF与平面PAB所成的角等于( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=ax3+bx2+cx+d的图象如图,则函数y=ax2+ bx+ 的单调递增区间是( )
A.(﹣∞,2]
B. ,+∞)
C.[﹣2,3]
D. ,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,点P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,则PA与BD所成角的度数为( )
A.30°
B.45°
C.60°
D.90°
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】等比数列{an}中,已知a1=1,a4=8,若a3 , a5分别为等差数列{bn}的第4项和第16项.
(1)求数列{an}﹑{bn}的通项公式;
(2)令cn=anbn , 求数列{cn}的前n项和Sn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=Asin(ωx+φ)+B (A>0,ω>0,|φ|< )的最大值为2 ,最小值为﹣ ,周期为π,且图象过(0,﹣ ).
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调递增区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=﹣3x2+a(6﹣a)x+c.
(1)当c=19时,解关于a的不等式f(1)>0;
(2)若关于x的不等式f(x)>0的解集是(﹣1,3),求实数a,c的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0)的离心率为 ,左,右焦点分别是F1 , F2 , 以F1为圆心以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上. (Ⅰ)求椭圆C的方程;
(Ⅱ)线段PQ是椭圆C过点F2的弦,且 =λ .
(i)求△PF1Q的周长;
(ii)求△PF1Q内切圆面积的最大值,并求取得最大值时实数λ的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com