精英家教网 > 高中数学 > 题目详情

【题目】新零售模式的背景下,某大型零售公司为推广线下分店,计划在S市的A区开设分店.为了确定在该区开设分店的个数,该公司对该市已开设分店的其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这x个分店的年收入之和.

x(个)

2

3

4

5

6

y(百万元)

2.5

3

4

4.5

6

(1)该公司经过初步判断,可用线性回归模型拟合yx的关系,求y关于x的线性回归方程;

2)假设该公司在A区获得的总年利润z(单位:百万元)与xy之间满足的关系式为:,请结合(1)中的线性回归方程,估算该公司应在A区开设多少个分店,才能使A区平均每个分店的年利润最大?

附:回归方程中的斜率和截距的最小二乘估计公式分别为:

.

(参考数据:

【答案】(1) (2)该公司应在A区开设5个分店,才能使A区平均每个分店的年利润最大

【解析】

(1)根据回归系数公式求回归系数,得出回归方程;

(2)利用基本不等式得出的最大值及对应的的值.

(1)

y关于x的线性回归方程为,

y关于x的线性回归方程为

(2)

∴平均每个分店的年利润为.

,当且仅当时取等号,

∴该公司应在A区开设个分店,才能使A区平均每个分店的年利润最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于定义域为的函数,若同时满足下列三个条件:① ,且时,都有 ,且时,都有 则称偏对称函数.现给出下列三个函数: 则其中是偏对称函数的函数个数为

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱锥中,MSC的中点,且,底面边长,则正三棱锥的外接球的表面积为_______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的两个焦点分别为,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.

(1)求椭圆C的方程;

(2)过点M(1,0)的直线与椭圆C相交于AB两点,设点N(3,2),记直线ANBN的斜率分别为k1k2,求证:k1+k2为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题正确的是(

A. 若直线,则直线ab异面

B. 空间内任意三点可以确定一个平面

C. 空间四点共面,则其中必有三点共线

D. 直线,则直线ab异面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处取得极小值.

1)求实数的值;

2)设,其导函数为,若的图象交轴于两点,设线段的中点为,试问是否为的根?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域在上的函数满足对于任意的,都有,当且仅当时,成立.

1)设,求证

2)设,若,试比较x1x2的大小;

3)若,解关于x的不等式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019101日为庆祝中国人民共和国成立70周年在北京天安门广场举行了盛大的阅兵仪式,共有580台(套)装备、160余架各型飞机接受检阅,受阅装备均为中国国产现役主战装备,其中包括部分首次公开亮相的新型装备.例如,在无人作战第三方队中就包括了两型侦察干扰无人机,可以在遥控设备或自备程序控制操纵的情况下执行任务,进行对敌方通讯设施的电磁压制和干扰,甚至压制敌人的防空系统.某作战部门对某处的战场实施电磁干扰实验,据测定,该处的干扰指数与无人机干扰源的强度和距离之比成正比,比例系数为常数),现已知相距36两处配置两架无人机干扰源,其对敌干扰的强度分别为1),它们连线段上任意一点处的干扰指数等于两机对该处的干扰指数之和,设.

1)试将表示为的函数,指出其定义域;

2)当时,试确定干扰指数最小时所处位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大以来,国家深入推进精准脱贫,加大资金投入,强化社会帮扶,为了更好的服务于人民,派调查组到某农村去考察和指导工作.该地区有200户农民,且都从事水果种植,据了解,平均每户的年收入为3万元.为了调整产业结构,调查组和当地政府决定动员部分农民从事水果加工,据估计,若能动员户农民从事水果加工,则剩下的继续从事水果种植的农民平均每户的年收入有望提高,而从事水果加工的农民平均每户收入将为万元.

1)若动员户农民从事水果加工后,要使从事水果种植的农民的总年收入不低于动员前从事水果种植的农民的总年收入,求的取值范围;

2)在(1)的条件下,要使这200户农民中从事水果加工的农民的总收入始终不高于从事水果种植的农民的总收入,求的最大值.

查看答案和解析>>

同步练习册答案