【题目】如图,四边形中, , , , , 分别在上, ,现将四边形沿折起,使.
(1)若,在折叠后的线段上是否存在一点,使得平面?若存在,求出的值;若不存在,说明理由;
(2)求三棱锥的体积的最大值,并求出此时点到平面的距离.
科目:高中数学 来源: 题型:
【题目】某地区拟建立一个艺术博物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从个招标问题中随机抽取个问题,已知这个招标问题中,甲公司可正确回答其中的道題目,而乙公司能正确回答毎道题目的概率均为,甲、乙两家公司对每题的回答都是相互独立,互不影响的.
(1)求甲、乙两家公司共答对道题目的概率;
(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,点是椭圆上的点,离心率.
(1)求椭圆的方程;
(2)点在椭圆上,若点与点关于原点对称,连接并延长与椭圆的另一个交点为,连接,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,已知AB丄平面BCD,M、N分别是AC、AD的中点,BC 丄 CD.
(1)求证:MN//平面BCD;
(2)若AB=1,BC=,求直线AC与平面BCD所成的角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C1: ,椭圆C2以C1的长轴为短轴,且与C1有
相同的离心率.
(1)求椭圆Q的方程;
(2)设0为坐标原点,点A,B分别在椭圆C1和C2上,,求直线AB的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【2016高考浙江理数】如图,设椭圆(a>1).
(I)求直线y=kx+1被椭圆截得的线段长(用a、k表示);
(II)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值
范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】【浙江省名校协作体2017届高三上学期联考】已知椭圆,经过椭圆上一点的直线与椭圆有且只有一个公共点,且点横坐标为.
(1)求椭圆的标准方程;
(2)若是椭圆的一条动弦,且,为坐标原点,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期中考试的学生中抽出60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60)…,[80,90),[90,100],然后画出如图所示部分频率分布直方图.观察图形的信息,回答下列问题:
(1)求第四小组的频率,并补全这个频率分布直方图;
(2)估计这次考试的及格率(60分及60分以上为及格)和平均分;
(3)把从[80,90)分数段选取的最高分的两人组成B组,[90,100]分数段的学生组成C组,现从B,C两组中选两人参加科普知识竞赛,求这两个学生都来自C组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,以原点为极点, 轴的正半轴为极轴,建立极坐标系.已知点的极坐标为,曲线的参数方程为 (为参数)
(1)求点的直角坐标;化曲线的参数方程为普通方程;
(2)设为曲线上一动点,以为对角线的矩形的一边垂直于极轴,求矩形周长的最小值,及此时点的直角坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com