精英家教网 > 高中数学 > 题目详情
已知函数f(x)=ln(1+x2)+ax(a≤0).
(1)若f(x)在x=0处取得极值,求a的值;
(2)讨论f(x)的单调性;
(3)证明:(1+
1
4
)(1+
1
16
)…(1+
1
4n
)<e1-
1
2n
(n∈N*,e为自然对数的底数)
(1)f′(x)=
2x
1+x2
+a,
∵x=0是f(x)的一个极值点,∴f′(0)=0,
∴a=0
∵x<0,f′(x)<0;x>0,f′(x)>0
∴a=0符合条件…(3分)
(2)f′(x)=
2x
1+x2
+a=
ax2+2x+a
1+x2
.…(4分)
①若a=0时,由(1)知,f(x)在(0,+∞)单调递增,在(-∞,0)单调递减;…(5分)
②若
a<0
△≤0
,即当a≤-1时,f'(x)≤0对x∈R恒成立.
∴f(x)在(-∞,+∞)上单调递减.…(6分)
③若当-1<a<0时,由f'(x)>0得ax2+2x+a>0,∴
-1+
1-a2
a
<x<
-1-
1-a2
a

再令f'(x)<0可得x>
-1-
1-a2
a
或x<
-1+
1-a2
a

∴f(x)在(
-1+
1-a2
a
-1-
1-a2
a
)上单调递增,在(-∞,
-1+
1-a2
a
),(
-1-
1-a2
a
,+∞)上单调递减.…(9分)
(3)证明:由(2)知,当a=-1时,f(x)在(-∞,+∞)上单调递减;
当x∈(0,+∞)时,由f(x)=ln(1+x2)-x<f(0)=0,∴ln(1+x2)<x
ln[(1+
1
4
)(1+
1
16
)…(1+
1
4n
)]=ln(1+
1
2
)+ln(1+
1
22
)+…+ln(1+
1
2n
)
1
2
+
1
22
+…+
1
2n
=
1
2
(1-
1
2n
)
1-
1
2
=1-
1
2n

(1+
1
4
)(1+
1
16
)…(1+
1
4n
)<e1-
1
2n
.…(14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若为奇函数,求的值;
(Ⅱ)若上恒大于0,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的极大值为,则等于(       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=lnx-
1
2
ax2
-2x.
(Ⅰ)当a=3时,求函数f(x)的极大值;
(Ⅱ)若函数f(x)存在单调递减区间,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线x+y+m=0对任意的m∈R都不是曲线f(x)=x3-3ax(x∈R)的切线,则a的取值范围是(  )
A.a
1
3
B.a≤
1
3
C.a>
1
3
D.a≥
1
3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a∈R,若函数y=x3+ax,x∈R有大于零的极值点,则(  )
A.a>0B.a<0C.a≥0D.a≤0

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x3+ax2+bx+c(a,b,c∈R),当且仅当x=1,x=-1时,f(x)取得极值,并且极大值比极小值大c.
(1)求常数a,b,c的值;
(2)求f(x)的极值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列命题中正确的是(       )
A.一个函数的极大值总是比极小值大B.函数的导数为时对应的点不一定是极值点
C.一个函数的极大值总比最大值小D.一个函数的最大值可以比最小值小

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数取得极大值或极小值时的的值分别为,则(       )
A.B.C.D.

查看答案和解析>>

同步练习册答案