精英家教网 > 高中数学 > 题目详情

【题目】某大型高端制造公司为响应《中国制造2025》中提出的坚持“创新驱动、质量为先、绿色发展、结构优化、人才为本”的基本方针,准备加大产品研发投资,下表是该公司2017年5~12月份研发费用(百万元)和产品销量(万台)的具体数据:

(1)根据数据可知之间存在线性相关关系

(i)求出关于的线性回归方程(系数精确到);

(ii)若2018年6月份研发投人为25百万元,根据所求的线性回归方程估计当月产品的销量;

(2)公司在2017年年终总结时准备从该年8~12月份这5个月中抽取3个月的数据进行重点分析,求没有抽到9月份数据的概率.

参考数据: .

参考公式:对于一组数据,,其回归直线的斜率和截距的最小二乘估计分别为: .

【答案】(1)(i);(2)6.415万台.(2).

【解析】分析:(1)(i)由题意结合系数的计算公式可得线性回归方程为.

(ii)由回归方程可预测当月产品的销量为万台.

(2)由题意可知,题中的事件共有种基本事件,满足题意的事件有种基本事件,则概率.

详解:(1)(i)因为,

所以

所以关于的线性回归方程为.

(ii), (万台).

(2)月份这个月的数据分别为,从中抽取个月的所有基本事件有:

,

种基本事件,

没有抽到月份的有 种基本事件,

所以概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若在区间上有极值,求实数的取值范围;

(Ⅱ)若有唯一的零点,试求的值.(注:为取整函数,表示不超过的最大整数,如;以下数据供参考:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣sin2x+sinxcosx+,x∈[0,]

(1)求函数f(x)的值域;

(2)若f()=,α∈(0,π),求sinα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有关命题的说法错误的是(

A.pq为假命题,则pq均为假命题

B.x1”x23x+20”的充分不必要条件

C.命题x23x+20,则x1”的逆否命题为:x≠1,则x23x+2≠0”

D.对于命题px≥02x3,则¬Px02x≠3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,曲线在点处的切线在两坐标轴上的截距之和为2,求的值

(2)若对于任意的及任意的总有成立.求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设向量a=(sinx-1,1),b=(sinx+3,1),c=(-1,-2),d=(k,1),k∈R.

(1)若x∈[-],且a∥(bc),求x的值;

(2)若存在x∈R,使得(ad)⊥(bc),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.

)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;

)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,某地出土的一种“钉”是由四条线段组成,其结构能使它任意抛至水平面后,总有一端所在的直线竖直向上.并记组成该“钉”的四条等长的线段公共点为,钉尖为

(1)判断四面体的形状,并说明理由;

(2)设,当在同一水平面内时,求与平面所成角的大小(结果用反三角函数值表示);

(3)若该“钉”着地后的四个线段根据需要可以调节与底面成角的大小,且保持三个线段与底面成角相同,若,问为何值时,的体积最大,并求出最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】写出下列各组命题构成的“”、“”以及“非”形式的命题,并判断它们的真假.

(1)是有理数,是整数;

(2):不等式的解集是:不等式的解集是

查看答案和解析>>

同步练习册答案