精英家教网 > 高中数学 > 题目详情
15.若方程x2+y2-x+2y+m=0表示一个圆,则m的取值范围为(-∞,$\frac{5}{4}$);此时,它的圆心坐标为($\frac{1}{2}$,-1);若m=1,则半径为$\frac{1}{2}$.

分析 圆x2+y2+Dx+Ey+F=0中,D2+E2-4F>0,圆心为(-$\frac{D}{2}$,-$\frac{E}{2}$),半径r=$\frac{1}{2}\sqrt{{D}^{2}+{E}^{2}-4F}$.

解答 解:∵方程x2+y2-x+2y+m=0表示一个圆,
∴(-1)2+22-4m>0,
解得m<$\frac{5}{4}$,
∴若方程x2+y2-x+2y+m=0表示一个圆,则m的取值范围为(-∞,$\frac{5}{4}$),
此时,它的圆心为($\frac{1}{2}$,-1),
当m=1时,圆的半径r=$\frac{1}{2}\sqrt{1+4-4}$=$\frac{1}{2}$.
故答案为:(-∞,$\frac{5}{4}$),($\frac{1}{2}$,-1),$\frac{1}{2}$.

点评 本题考查圆心、半径的求法,考查圆中参数的取值范围的求法,是基础题,解题时要认真审题,注意圆的一般方程的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.关于x的不等式ax2+bx+c>0的解集为(-2,3),则关于x的不等式ax2-bx+c>0的解集为(-3,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=x+$\frac{a}{x}$+lnx(a∈R),在(1,+∞)上单调递增,则a的取值范围为(-∞,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知锐角△ABC的内角A=$\frac{π}{3}$,点0为三角形外接圆的圆心,若$\overrightarrow{OA}$=x$\overrightarrow{OB}$+y$\overrightarrow{OC}$,则2x-y的范围为(-2,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等比数列{an}的公比q>1.且2(an+an+2)=5an+1,n∈N*
(I)求q的值;
(Ⅱ)若a32=a10,求数列{$\frac{{a}_{n}}{{3}^{n}}$}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.求值:①lgx=2,则x=100;
②lg1=0;lg10=1;lg100=2;
③ln1=0;lne=1;ln$\sqrt{e}$=$\frac{1}{2}$;
④3x=5,y=log3$\frac{9}{5}$,则x+y=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某大学餐饮中心为了解新生的饮食习惯,在全校-年级学生中进行随机抽职了100名学生进行调查.调查结果如表所示:
 喜欢甜品不喜欢甜品合计
南方学生601070
北方学生201030
合计8020100
(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;
(2)将上述调查所得到学生喜欢甜品的频率视为概率.现在从该大学一年级学生中,采用随机抽样的方法抽职1名学生,抽职5次,记被抽取的5名学生中的“喜欢甜品人数”为X.若每次抽职结果是相互独立的,求期望E(X)和方差D(X).
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(a+c)(c+d)(b+d)}$,
P(K2≥K)
 
0.100
 
0.050
 
0.010
 
K2.7063.8416.635

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.平行于x轴,且过点(3,2)的直线的方程为(  )
A.x=3B.y=2C.y=$\frac{3}{2}$xD.y=$\frac{2}{3}$x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=ax2+bx+c的图象过点(0,1),且有唯一的零点-1.
(I)求f(x)的表达式;
(Ⅱ)求函数F(x)=f(x)-7x,x∈[-2,2]的最小值.

查看答案和解析>>

同步练习册答案