精英家教网 > 高中数学 > 题目详情

【题目】定义在上的函数对任意都有,且函数的图象关于原点对称,若满足不等式,则当时, 的取值范围是( )

A. B. C. D.

【答案】D

【解析】∵定义在R上的函数fx)对任意x1x2x1≠x2)都有

∴f(x)在R上单调递减,∵y=f(x+1)的图象关于原点对称,
∴y=f(x)的图象关于点(1,0)对称,∴f(1-x)=-f(1+x),
∴-f(2t-t2+2)=-f[1+(2t-t2+1)]=f[1-(2t-t2+1)]=f(t2-2t),
∵f(s2-2s)≤-f(2t-t2+2),∴f(s2-2s)≤f(t2-2t),

fx)在R上单调递减,
s2-2s≥t2-2ts-t)(s+t-2≥0

s为横坐标,t为纵坐标建立平面直角坐标系,画出不等式组所表示的平面区域

整理,得 直线恒经过原点O00
由图象可知kOB

的取值范围是

故选D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆C:(x﹣1)2+y2=4
(1)求过点P(3,3)且与圆C相切的直线l的方程;
(2)已知直线m:x﹣y+1=0与圆C交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)求的普通方程和的倾斜角;

(2)设点交于两点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)的一个极值为

(1)求实数的值;

(2)若函数在区间上的最大值为18,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数),函数,(为常数,且).

(1)若函数有且只有1个零点,求的取值的集合.

(2)当(1)中的取最大值时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且2asinB= b.
(1)求角A的大小;
(2)若a=6,b+c=8,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图的程序语句输出的结果S为( )

A.19
B.17
C.15
D.13

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC的内角A,B,C的对边分别为a,b,c,且cosAcosC﹣cos(A+C)=sin2B. (Ⅰ)证明:a,b,c成等比数列;
(Ⅱ)若角B的平分线BD交AC于点D,且b=6,SBAD=2SBCD , 求BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的内角A,B,C的对边分别为a,b,c,若cosA= ,c=3b,且△ABC面积SABC=
(1)求边b.c;
(2)求边a并判断△ABC的形状.

查看答案和解析>>

同步练习册答案