【题目】孝感市旅游局为了了解双峰山景点在大众中的熟知度,从年龄在15~65岁的人群中随机抽取人进行问卷调查,把这人按年龄分成5组:第一组,第二组,第三组,第四组,第五组,得到的样本的频率分布直方图如图:
调查问题是“双峰山国家森林公园是几级旅游景点?”每组中回答正确的人数及回答正确的人数占本组的频率的统计结果如下表.
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人;
(3)在(2)抽取的6人中随机抽取2人,求所抽取的两人来自不同年龄组的概率.
【答案】(1),,;(2)2,3,1;(3).
【解析】
(1)由频率表中第1组数据得到第1组总人数为,再结合频率分布直方图得到,进而得到,;
(2)根据第2,3,4组回答正确的共有54人和各组人数,利用分层抽样的方法得到各组应抽取的人数.
(3)由(2)的结果,设第2组的2人为;第3组的3人为;第4组的1人为.列举出从6人中随机抽取2人的所有可能的结果的种数,再找出所抽取的两人来自不同组的结果的种数,代入古典概型的概率公式求解.
(1)由频率表中第1组数据可知,第1组总人数为,
再结合频率分布直方图可知,
所以,
;
(2)因为第2,3,4组回答正确的共有54人,
所以利用分层抽样在54人中抽取6人,每组分别抽取的人数为:
第2组:;第3组:;第4组:.
(3)设第2组的2人为;第3组的3人为;第4组的1人为.
则从6人中随机抽取2人的所有可能的结果为:
,,,,,,,,,,,,,,,共15种,
其中所抽取的两人来自不同组的结果为:
,,,,,,,,,,,共11种,
所以所抽取的两人来自不同年龄组概率.
科目:高中数学 来源: 题型:
【题目】某学校高三年级有400名学生参加某项体育测试,根据男女学生人数比例,使用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:,整理得到如下频率分布直方图:
(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;
(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;
(3)若规定分数在为“良好”,为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的图象向左平移1个单位后关于y轴对称,当x2>x1>1时,[f(x2)﹣f(x1)](x2﹣x1)<0恒成立,设a=f(),b=f(2),c=f(3),则a、b、c的大小关系为( )
A.c>a>bB.c>b>aC.a>c>bD.b>a>c
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定义在R上的偶函数f(x)和奇函数g(x)满足.
(1)求函数f(x)和g(x)的表达式;
(2)当时,不等式恒成立,求实数a的取值范围;
(3)若方程在上恰有一个实根,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数为奇函数,,其中.
(1)若函数的图像过点,求实数和的值;
(2)若,试判断函数在上的单调性并证明;
(3)设函数,若对每一个不小于3的实数,都恰有一个小于3的实数,使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程为(为参数),以直角坐标系的原点o为极点,x轴的正半轴为极轴,建立极坐标系,直线l的极坐标方程是:
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程:
(Ⅱ)点P是曲线C上的动点,求点P到直线l距离的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)求在点P(1,)处的切线方程;
(2)若关于x的不等式有且仅有三个整数解,求实数t的取值范围;
(3)若存在两个正实数,满足,求证:.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com