精英家教网 > 高中数学 > 题目详情

已知函数.

(1)列表并画出函数在长度为一个周期的闭区间上的简图;
(2)将函数的图象作怎样的变换可得到的图象?

(1)
   
(2)方法一:先把的图象向右平移个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到的图象.
方法二:先把的图象所有点的纵坐标扩大为原来的3倍,然后把所有点的横坐标扩大为原来的2倍,再把图象向右平移个单位,得到的图象.

解析试题分析:(1)函数的周期 
,解得. 列表如下:

x






0

π


3sin()
0
3
0
–3
0
                                                       (3分)
描出五个关键点并光滑连线,得到一个周期的简图. 图象如下.
   (6分)
(2)方法一:先把的图象向右平移个单位,然后把所有点的横坐标扩大为原来的2倍,再把所有点的纵坐标扩大为原来的3倍,得到的图象.   (12分)
方法二:先把的图象所有点的纵坐标扩大为原来的3倍,然后把所有点的横坐标扩大为原来的2倍,再把图象向右平移个单位,得到的图象.    (12分)
考点:本题主要考查“五点法”作图,正弦型函数的图象变换。
点评:中档题,“五点法”作图遵循“列表,描点,连线”。函数图象的变换有两种途径,注意周期变换与平移变换交换次序后,平移单位数的不同。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知
(1)求的值域;
(2)若,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数.
(1)求的单调区间;
(2)请说出的图象是由的图象经过怎样的变换得到的(说清每一步的变换方法);
(3)当时,求的最大值及取得最大值时的的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的图象的一部分如图所示.

(Ⅰ)求函数的解析式;
(Ⅱ)当时,求函数的最值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知定义在区间上的函数的图象关于直线对称,当时,函数,其图象如图所示.

(Ⅰ)求函数的表达式;
(Ⅱ)求方程的解;
(Ⅲ)是否存在常数的值,使得上恒成立;若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

分析方程的解的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,求:
(1)的最小正周期;
(2)在区间上的最大值和最小值及取得最值时的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)、已知函数若角
(2)函数的图象按向量平移后,得到一个函数g(x)的图象,求g(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)若,有,求的取值范围;
(2)当有实数解时,求的取值范围。

查看答案和解析>>

同步练习册答案