精英家教网 > 高中数学 > 题目详情
已知m>0,(1+mx)6=a0+a1x+a2x2+…+a6x6,若a1+a2+…+a6=63,则实数m=
 
考点:二项式定理的应用
专题:二项式定理
分析:在所给的等式中,令x=0,可得a0=1;令x=1,可得1+a1+a2+…+a6=(1+m)6,即64=(1+m)6,由此求得 m的值.
解答: 解:∵m>0,在(1+mx)6=a0+a1x+a2x2+…+a6x6 中,令x=0,可得a0=1.
在(1+mx)6=a0+a1x+a2x2+…+a6x6 中,令x=1,可得1+a1+a2+…+a6=(1+m)6
∴64=(1+m)6,∴m=1,
故答案为:1.
点评:本题主要考查二项式定理的应用,注意根据题意,分析所给代数式的特点,通过给二项式的x赋值,求展开式的系数和,可以简便的求出答案,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题p:?x>0,2x>1,则¬p为(  )
A、?x>0,2x≤1
B、?x0>0,2 x0≤1
C、?x0>0,2 x0>1
D、?x0>0,2 x0≥1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在空间四边形ABCD中,AB=BC=CD=DA=
3
,BD=AC=2
(Ⅰ)求证:BD⊥AC;
(Ⅱ)求二面角A-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出以下命题其中正确的序号为
 

(1)直线y=kx+1-4k和圆x2+y2-6x-4y+9=0的位置与k的取值有关;
(2)椭圆
x2
9
+
y2
4
=1
不存在以M(2,0)为中点的弦;
(3)双曲线x2-
y2
2
=1不存在以P(1,1)为中点的弦;
(4)若抛物线y2=4x与直线y=k(x+2)有且只有一个交点,则k=0或k=
2
2
或k=-
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(x+
π
6
)-cosx
(1)求f(
3
)的值;
(2)在△ABC中,若A∈(0,
π
2
),f(A+
3
)=
3
5
,f(B-
π
3
)=-
4
5
,试求角C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合P={(x,y)||x|+|y|≤4},Q={(x,y)|(x-a)2+(y-b)2≤2,a,b∈R}.若Q⊆P,则2a+3b的最大值为(  )
A、4B、6C、8D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(0,sinx),
b
=(1,2cosx),函数f(x)=
3
2
a
b
,g(x)=
a
2+
b
2-
7
2
,则f(x)的图象可由g(x)的图象经过怎样的变换得到(  )
A、向左平移
π
4
个单位长度
B、向右平移
π
4
个单位长度
C、向左平移
π
2
个单位长度
D、向右平移
π
2
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

设随机变量ξ的分布列为P(ξ=i)=a(
1
3
i,i=1,2,3,则实数a的值为(  )
A、1
B、
9
13
C、
11
13
D、
27
13

查看答案和解析>>

科目:高中数学 来源: 题型:

如果a<b<0,那么下列不等式成立的是(  )
A、-
1
a
<-
1
b
B、ab<b2
C、-ab<-a2
D、|a|<|b|

查看答案和解析>>

同步练习册答案