精英家教网 > 高中数学 > 题目详情
(2012•河南模拟)设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1,F2,上顶点为A,过点A与AF2垂直的直线交z轴负半轴于点Q,且2
F1F2
+
F2Q
=0
,过A,Q,F2三点的圆的半径为2.过定点M(0,2)的直线l与椭圆C交于G,H两点(点G在点M,H之间).
(I)求椭圆C的方程;
(Ⅱ)设直线l的斜率k>0,在x轴上是否存在点P(m,0),使得以PG,PH为邻边的平行四边形是菱形.如果存在,求出m的取值范围,如果不存在,请说明理由.
分析:(I)因为2
F1F2
+
F2Q
=0
,知a,c的一个方程,再利用△AQF的外接圆与直线l相切得出另一个方程,解这两个方程组成的方程组即可求得所求椭圆方程;
(II)设l的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合根与系数的关系利用向量的坐标表示,利用基本不等式,即可求得m的取值范围.
解答:解:(I)因为2
F1F2
+
F2Q
=0
,所以F1为F2Q中点.
设Q的坐标为(-3c,0),
因为AQ⊥AF2,所以b2=3c×c=3c2,a2=4c×c=4c2
且过A,Q,F2三点的圆的圆心为F1(-c,0),半径为2c
因为该圆与直线l相切,所以
|-c-3|
2
=2c
,解得c=1,
所以a=2,b=
3
,所以所求椭圆方程为
x2
4
+
y2
3
=1

(Ⅱ)设l的方程为y=kx+2(k>0),与椭圆方程联立,消去y可得(3+4k2)x2+16kx+4=0.
设G(x1,y1),H(x2,y2),则x1+x2=-
16k
3+4k2

PG
+
PH
=(x1-m,y1)+(x2-m,y2)=(x1+x2-2m,y1+y2).
=(x1+x2-2m,k(x1+x2)+4)
GH
=(x2-x1,y2-y1)=(x2-x1,k(x2-x1)).
由于菱形对角线互相垂直,则(
PG
+
PH
)•
GH
=0,
所以(x2-x1)[(x1+x2)-2m]+k(x2-x1)[k(x1+x2)+4]=0.
故(x2-x1)[(x1+x2)-2m+k2(x1+x2)+4k]=0.
因为k>0,所以x2-x1≠0.
所以(x1+x2)-2m+k2(x1+x2)+4k=0,即(1+k2)(x1+x2)+4k-2m=0.
所以(1+k2)(-
16k
3+4k2
)+4k-2m=0.
解得m=-
2k
3+4k2
,即m=-
2
3
k
+4k

因为k>
1
2
,可以使
3
k
=4k
,所以-
3
6
≤m<0

故存在满足题意的点P且m的取值范围是[-
3
6
,0
).
点评:本题考查椭圆的标准方程,考查直线与椭圆的位置关系,考查韦达定理的运用,考查基本不等式的运用,解题时应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•河南模拟)如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA,E为PD的上一点,且PE=2ED,F为PC的中点.
(Ⅰ)求证:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)己知i为虚数单位,则
i
1+i
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)已知a,b,c分别是△ABC的三个内角A,B,C的对边,若c=2,b=
3
,A+C=3B,则sinC=
6
3
6
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)若函数f(x)的导函数f′(x)=x2-4x+3,则使得函数f(x-1)单调递减的一个充分不必要条件是x∈(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•河南模拟)选修4-5:不等式选讲
设f(x)=2|x|-|x+3|.
(1)求不等式f(x)≤7的解集S;
(2)若关于x的不等式f(x)+|2t-3|≤0有解,求参数t的取值范围.

查看答案和解析>>

同步练习册答案