【题目】如下图,三棱柱中,侧面 底面, ,且,O为中点.
(Ⅰ)证明: 平面;
(Ⅱ)求直线与平面所成角的正弦;
(Ⅲ)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.
【答案】(1)详见解析;(2);(3)为的中点.
【解析】(1)因为侧面底面,所以只需证明即可.
(2)可以以O为原点,ON,OC,OA1所在直线为x,y,z轴建立空间直角坐标系,然后用向量的方法求解线面角的问题.
(3)在(2)的基础上也可以用向量来求点E位置.也可以取BC的中点M,连接OM,取BC1的中点E,连接ME,则OM//AB,ME//BB1//AA1,所以平面OMB//平面AA1B,所以OE//平面.从而确定E为BC1的中点.
(Ⅰ)证明:因为,且O为AC的中点,
所以
又由题意可知,平面平面,交线为,且平面,
所以平面
(Ⅱ)如图,以O为原点, 所在直线分别为x,y,z轴建立空间直角坐标系.
由题意可知, 又
所以得:
则有:
设平面的一个法向量为,则有
,令,得
所以
因为直线与平面所成角和向量与所成锐角互余,所以
(Ⅲ)设
即,得
所以得
令平面,得,
即得
即存在这样的点E,E为的中点
科目:高中数学 来源: 题型:
【题目】已知单调递增的等差数列{an},满足|a10a11|>a10a11 , 且a102<a112 , Sn为其前n项和,则( )
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10为Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10为Sn的最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆方程,其左焦点、上顶点和左顶点分别为, , ,坐标原点为,且线段, , 的长度成等差数列.
(Ⅰ)求椭圆的离心率;
(Ⅱ)若过点的一条直线交椭圆于点, ,交轴于点,使得线段被点, 三等分,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) | |||||
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.
(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数().
(1)写出函数的值域,单调区间(不必证明);
(2)是否存在实数使得的定义域为,值域为?若存在,求出实数的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且在轴上截得的弦长为4,记动圆圆心的轨迹为曲线C.
(Ⅰ)求直线与曲线C围成的区域面积;
(Ⅱ)点在直线上,点,过点作曲线C的切线、,切点分别为、,证明:存在常数,使得,并求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴非负半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的极坐标方程及直线的直角坐标方程;
(2)设直线与曲线交于两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com