精英家教网 > 高中数学 > 题目详情
5.已知α∈($\frac{3}{2}$π,2π),求$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$的值.

分析 由题意可得cosα>0,cos$\frac{α}{2}$<0,再利用二倍角的余弦公式、以及三角函数在各个象限中的符号化简所给的式子,可得结果.

解答 解:∵α∈($\frac{3}{2}$π,2π),∴cosα>0,cos$\frac{α}{2}$<0,
∴$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{{cos}^{2}α}}$=$\sqrt{\frac{1}{2}+\frac{1}{2}cosα}$=$\sqrt{\frac{1}{2}+\frac{1}{2}({2cos}^{2}\frac{α}{2}-1)}$
=|cos$\frac{α}{2}$|=-cos$\frac{α}{2}$.

点评 本题主要考查二倍角的余弦公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.正四棱锥P-ABCD内接于球,底面ABCD是和球心O在同一平面内,球的体积为$\frac{8\sqrt{2}π}{3}$,则正四棱锥P-ABCD的表面积为 (  )
A.4$\sqrt{3}$B.4+4$\sqrt{3}$C.4+4$\sqrt{2}$D.4+8$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在四棱锥E-ABCD中,底面ABCD为正方形,侧面EAD是正三角形,平面EAD⊥平面ABCD为正方形,P为EC的中点.
(1)求证:EA∥平面PBD;
(2)若正方形ABCD的边长为2,求三棱锥E-PBD的体积及点P到平面EBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.点F(c,0)为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点,点P为双曲线左支上一点,线段PF与圆x2+y2=$\frac{{b}^{2}}{4}$相切于点Q,且$\overrightarrow{PQ}$=$\frac{1}{2}$$\overrightarrow{PF}$,则双曲线的离心率等于(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知在四棱锥P-ABCD中,平面ABCD是平行四边形,侧棱PA⊥平面ABCD,M、N分别为PD、AC的中点.
(1)求证:MN∥平面PAB;
(2)当PA=AD=2,AB⊥AD时,求点N到平面ABM的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设函数f(x)=(x2+ax)e-x,(a∈R)
(1)试判断f(x)在x∈R上能否为单调函数,并说明理由;
(2)若f(x)=2在(0,1)内有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=log2(4x+1)+kx,(k∈R)是偶函数,则k的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AD=2AB=2,E为棱BC的中点.
(1)证明:平面PAE⊥平面PDE;
(2)求棱锥A--PDE的高;
(3)设二面角A-PD-E的大小为θ,求cosθ.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1与直线y=x+b相切,则双曲线C的离心率为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{5}}{2}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案