分析 由题意可得cosα>0,cos$\frac{α}{2}$<0,再利用二倍角的余弦公式、以及三角函数在各个象限中的符号化简所给的式子,可得结果.
解答 解:∵α∈($\frac{3}{2}$π,2π),∴cosα>0,cos$\frac{α}{2}$<0,
∴$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}cos2α}}$=$\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{{cos}^{2}α}}$=$\sqrt{\frac{1}{2}+\frac{1}{2}cosα}$=$\sqrt{\frac{1}{2}+\frac{1}{2}({2cos}^{2}\frac{α}{2}-1)}$
=|cos$\frac{α}{2}$|=-cos$\frac{α}{2}$.
点评 本题主要考查二倍角的余弦公式的应用,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | 4$\sqrt{3}$ | B. | 4+4$\sqrt{3}$ | C. | 4+4$\sqrt{2}$ | D. | 4+8$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{5}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{2}$ | B. | $\frac{\sqrt{6}}{2}$ | C. | $\frac{\sqrt{5}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com