精英家教网 > 高中数学 > 题目详情
17.已知函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,则f[f(-1)]的值是(  )
A.40B.42C.44D.45

分析 由已知得f(-1)=(-1)(-1-4)=5,从而f[f(-1)]=f(5),由此能求出结果.

解答 解:∵函数$f(x)=\left\{\begin{array}{l}x(x+4),x≥0\\ x(x-4),x<0\end{array}\right.$,
∴f(-1)=(-1)(-1-4)=5,
f[f(-1)]=f(5)=5(5+4)=45.
故选:D.

点评 本题考查函数值的求不地,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.2016年10月3日,诺贝尔生理学或医学奖揭晓,获奖者是日本生物学家大隅良典,他的获奖理由是“发
现了细胞自噬机制”.在上世纪90年代初期,他筛选了上千种不同的酵母细胞,找到了15种和自噬有关
的基因,他的研究令全世界的科研人员豁然开朗,在此之前,每年与自噬相关的论文非常少,之后呈现
了爆发式增长,下图是1994年到2016年所有关于细胞自噬具有国际影响力的540篇论文分布如下:

(Ⅰ)从这540篇论文中随机抽取一篇来研究,那么抽到2016年发表论文的概率是多少?
(Ⅱ)如果每年发表该领域有国际影响力的论文超过50篇,我们称这一年是该领域的论文“丰年”.若从1994年到2016年中随机抽取连续的两年来研究,那么连续的两年中至少有一年是“丰年”的概率是多少?
(Ⅲ)由图判断,从哪年开始连续三年论文数量方差最大?(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.几何体的三视图如图所示(单位:cm),则该几何体的体积为$3\sqrt{3}$cm3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知tanα=2,求下列各式的值:
(1)$\frac{4sinα-2cosα}{5cosα+3sinα}$;
(2)sinαcosα;
(3)(sinα+cosα)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在正三棱锥V-ABC内,有一个半球,其底面与正三棱锥的底面重合,且与正三棱锥的三个侧面都相切,若半球的半径为2,则正三棱锥的体积的最小时,其底面边长为$6\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知变量x,y有如表中的观察数据,得到y对x的回归方程是$\widehaty=0.83x+a$,则其中a的值是(  )
x0134
y2.44.54.66.5
A.2.64B.2.84C.3.95D.4.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义:分子为1且分母为正整数的分数为单位分数,我们可以把1拆为若干个不同的单位分数之和.如:1=$\frac{1}{2}$+$\frac{1}{3}$+$\frac{1}{6}$,1=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$+$\frac{1}{12}$,1=$\frac{1}{2}$+$\frac{1}{5}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{20}$,以此类推,可得:1=$\frac{1}{2}$+$\frac{1}{6}$+$\frac{1}{12}$+$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{30}$+$\frac{1}{42}$+$\frac{1}{56}$+$\frac{1}{72}$+$\frac{1}{90}$+$\frac{1}{110}$+$\frac{1}{132}$+$\frac{1}{156}$,其中a<b,a,b∈N*,设1≤x≤a,1≤y≤b,则$\frac{x+y+4}{x+2}$的最小值为(  )
A.$\frac{25}{3}$B.$\frac{23}{7}$C.$\frac{8}{7}$D.$\frac{6}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某校高三共有男生400名,从所有高三男生中随机抽取20名男生测量身高(单位:cm)作为样本,得到频率分布表与频率分布直方图1(部分)如表:
 分组频数 频率 
[150,160)1 
[160,170) n1 f1
[170,180)  n2 f2 
[180,190)5
[190,200]3 

(Ⅰ)求n1、n2、f1、f2
(Ⅱ)试估计身高不低于180cm的该校高三男生人数,并说明理由;
(Ⅲ)从样本中不低于180cm的男生身高,绘制成茎叶图(图2);
现从身高不低于185cm的男生中任取3名参加选拔性测试,求至少有两位身高不低于190cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调减函数,若f(1)<f(lgx),则x的取值范围为$\frac{1}{10}$<x<10.

查看答案和解析>>

同步练习册答案