【题目】设f(x)=2sin(π-x)sin x-(sin x-cos x)2.
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移个单位,得到函数y=g(x)的图象,求g的值.
【答案】(1)(k∈Z);(2).
【解析】
根据三角函数变换公式对进行化简,进而根据化简后的表达式求出的单调区间
对中的进行平移后得到的图象,代入数值计算即可
(1)f(x)=2sin(π-x)sin x-(sin x-cos x)2=2sin2x-(1-2sin xcos x)=(1-cos 2x)+sin 2x-1=sin 2x-cos 2x+-1=2sin-1,
由2kπ-≤2x-≤2kπ+(k∈Z),得kπ-≤x≤kπ+(k∈Z),
所以f(x)的单调递增区间是(k∈Z).
(2)由(1)知f(x)=2sin-1,把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y=2sin-1的图象,再把得到的图象向左平移个单位,得到y=2sin x+-1的图象,即g(x)=2sin x+-1.所以g=2sin -1=.
科目:高中数学 来源: 题型:
【题目】如图是一段圆锥曲线,曲线与两个坐标轴的交点分别是.
(1)若该曲线为椭圆(中心为原点,对称轴为坐标轴)的一部分,设直线过点且斜率是,求直线与该段曲线的公共点的坐标.
(2)若该曲线为抛物线的一部分,求原抛物线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,圆心为,定点,P为圆上一点,线段上一点N满足,直线上一点Q,满足.
(Ⅰ) 求点Q的轨迹C的方程;
(Ⅱ) O为坐标原点, 是以为直径的圆,直线与相切,并与轨迹C交于不同的两点A,B. 当且满足时,求△OAB面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有偶数个球,其中红球、黑球各占一半.甲、乙、丙是三个空盒.每次从袋中任意取出两个球,将其中一个球放入甲盒,如果这个球是红球,就将另一个球放入乙盒,否则就放入丙盒.重复上述过程,直到袋中所有球都被放入盒中,则( )
A.乙盒中黑球不多于丙盒中黑球
B.乙盒中红球与丙盒中黑球一样多
C.乙盒中红球不多于丙盒中红球
D.乙盒中黑球与丙盒中红球一样多
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射击运动员射击1次,命中10环、9环、8环、7环(假设命中的环数都为整数)的概率分别为0.20,0.22,0.25,0.28. 计算该运动员在1次射击中:
(1)至少命中7环的概率;
(2)命中不足8环的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂利用辐射对食品进行灭菌消毒,现准备在该厂附近建一职工宿舍,并对宿舍进行防辐射处理,建房防辐射材料的选用与宿舍到工厂距离有关.若建造宿舍的所有费用(万元)和宿舍与工厂的距离的关系为: .为了交通方便,工厂与宿舍之间还要修一条简易便道,已知修路每公里成本为万元,工厂一次性补贴职工交通费万元.设为建造宿舍、修路费用与给职工的补贴之和.
⑴求的表达式;
⑵宿舍应建在离工厂多远处,可使总费用最小,并求最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)=2 sin(π﹣x)sinx﹣(sinx﹣cosx)2 .
(1)求f(x)的单调递增区间;
(2)把y=f(x)的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移 个单位,得到函数y=g(x)的图象,求g( )的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com