精英家教网 > 高中数学 > 题目详情

【题目】设数列{an}的前n项和为Snn∈N*.已知a1=1,a2a3,且当n≥2时,4Sn+2+5Sn=8Sn+1Sn-1.

(1)求a4的值;

(2)证明: 为等比数列.

【答案】(1) ;(2)详见解析.

【解析】试题分析:(1)由题意令,把数列的和用项的形式列出,代入已知求出;(2)由已知拆项,化简为数列的递推关系式形式,由等比数列的定义以及代入,即可证明.

试题解析:

(1)解:当n=2时,4S4+5S2=8S3S1,即4+5=8+1,解得a4.

(2)证明:由4Sn+2+5Sn=8Sn+1Sn-1(n≥2),得4Sn+2-4Sn+1SnSn-1=4Sn+1-4Sn(n≥2),即4an+2an=4an+1(n≥2).

因为 4a3a1=4×+1=6=4a2

所以 4an+2an=4an+1

所以

所以 数列是以a2a1=1为首项,为公比的等比数列.

点睛: 等比数列的判断方法有:(1)定义法:若 (为非零常数) (为非零常数且),则是等比数列.(2)中项公式法:在数列中, (),则数列是等比数列.(3)通项公式法:若数列通项公式可写成 ( 均是不为0的常数, ),则是等比数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,点是椭圆的一个顶点, 的长轴是圆的直径. 是过点且互相垂直的两条直线,其中交圆于两点交椭圆于另一点.

(1)求椭圆的方程;

2)求面积取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为 ,数列满足在直线上.

(1)求数列 的通项

(2)令,求数列的前项和

(3)若,求对所有的正整数都有成立的的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一袋中装有6个黑球,4个白球.如果不放回地依次取出2个球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的条件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,ABCD﹣A1B1C1D1是棱长为a的正方体,M、N分别是下底面的棱A1B1 , B1C1的中点,P是上底面的棱AD上的一点,AP= ,过P、M、N的平面交上底面于PQ,Q在CD上,则PQ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列{an}的前n项和为Sn,已知a1=10,a2为整数,且SnS4.

(1)求{an}的通项公式;

(2)设bn,求数列{bn}的前n项和Tn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足 ,其中 为非零常数.

(1)若 ,求证: 为等比数列,并求数列的通项公式;

(2)若数列是公差不等于零的等差数列.

①求实数 的值;

②数列的前项和构成数列,从中取不同的四项按从小到大排列组成四项子数列.试问:是否存在首项为的四项子数列,使得该子数列中的所有项之和恰好为2017?若存在,求出所有满足条件的四项子数列;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】双“十一”结束之后,某网站针对购物情况进行了调查,参与调查的人主要集中在[20,50]岁之间,若规定:购物600(含600元)以下者,称为“理智购物”,购物超过600元者被网友形象的称为“剁手党”,得到如下统计表:

分组编号

年龄分组

球迷

所占比例

1

[20,25)

1000

0.5

2

[25,30)

1800

0.6

3

[30,35)

1200

0.5

4

[35,40)

a

0.4

5

[40,45)

300

0.2

6

[45,50]

200

0.1

若参与调查的“理智购物”总人数为7720人.
(1)求a的值;
(2)从年龄在[20,35)的“剁手党”中按照年龄区间分层抽样的方法抽取20人; ①从这20人中随机抽取2人,求这2人恰好属于同一年龄区间的概率;
②从这20人中随机抽取2人,用ζ表示年龄在[20,25)之间的人数,求ξ的分布列及期望值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公差不为0的等差数列{an}的前n项和为Sn, S3=a4+6,且a1, a4, a13成等比数列.

(1)求数列{an}的通项公式;

(2),求数列{bn}的前n项和.

查看答案和解析>>

同步练习册答案