精英家教网 > 高中数学 > 题目详情
7.在平面直角坐标系中,设点P1(x1,y1)、P2(x2,y2),称d(P1,P2)=max{|x1-x2|,|y1-y2|}(其中max{a,b}表示a、b中的较大数)为P1、P2两点的“切比雪夫距离”;
(1)若P(3,1)、Q为直线y=2x-1上的动点,求P,Q两点的“切比雪夫距离”的最小值;
(2)定点C(x0,y0),动点P(x,y)满足d(C,P)=r(r>0),请求出P点所在的曲线所围成图形的面积.

分析 (1)设Q(x,2x-1),可得d(P,Q)=max{|x-3|,|2-2x|},讨论|x-3|,|2-2x|的大小,可得距离d,再由函数的性质,可得最小值;
(2)运用分段函数的形式求得d(C,P),分析各段与不等式表示的区域的图形,即可得到面积.

解答 解:(1)设Q(x,2x-1),可得d(P,Q)=max{|x-3|,|2-2x|},
由|x-3|≥|2-2x|,解得-1≤x≤$\frac{5}{3}$,即有d(P,Q)=|x-3|,
当x=$\frac{5}{3}$时,取得最小值$\frac{4}{3}$;
由|x-3|<|2-2x|,解得x>$\frac{5}{3}$或x<-1,即有d(P,Q)=|2x-2|,
d(P,Q)的范围是(3,+∞)∪($\frac{4}{3}$,+∞)=($\frac{4}{3}$,+∞).
综上可得,P,Q两点的“切比雪夫距离”的最小值为$\frac{4}{3}$;
(2)由题意可得,d(C,P)=r=$\left\{\begin{array}{l}{|{x}_{0}-x|,|{x}_{0}-x|≥|{y}_{0}-y|}\\{|{y}_{0}-y|,|{x}_{0}-x|<|{y}_{0}-y|}\end{array}\right.$,
当|x0-x|≥|y0-y|,|x0-x|=r,即有x=x0±r,
围成的图形为关于点(x0,y0)对称的三角形区域;
当|x0-x|<|y0-y|,|y0-y|=r,即有y=y0±r,
围成的图形为关于点(x0,y0)对称的三角形区域.
综上可得P点所在的曲线所围成图形为边长为2r的正方形区域,
其面积为4r2

点评 本题考查新定义的理解和运用,考查不等式的解法和平面区域的面积求法,注意运用分类讨论的思想方法,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知集合A={x|x<-3或x>4},B={x|x≥m}.若A∩B={x|x>4},则实数m的取值范围是(  )
A.(-4,3)B.[-3,4]C.(-3,4)D.(一∞,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知数列{an}中,a1=3,a2=5,且对于任意的大于2的正整数n,有an=an-1-an-2,则a2015=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图数表,为一组等式:某学生根据上表猜测S2n-1=(2n-1)(an2+bn+c),老师回答正确,则a-b+c=5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.过椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点F1(-$\sqrt{3}$,0),而且过点C($\sqrt{3}$,$\frac{1}{2}$)
(1)求椭圆E的方程:
(2)过点C的直线l与椭圆E的另一交点为D,与y轴的交点为B.过原点O且平行于l的直线与椭圆的一个交点为H.若CD•CB=2OH2,求直线l的方程.
(3)设椭圆E的上下顶点分别为A1,A2,P是椭圆上异于A1,A2的任一点,直线PA1,PA2分别交x轴于点N,M,若直线0T与过点M,N的圆G相切,切点为T.线段0T的长是否为定值,若是并求出该定值,不是说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.方程组$\left\{\begin{array}{l}x+y=5\\ x-y=1\end{array}$的解集为(  )
A.(2,3)B.{(3,2)}C.(3,2)D.{(2,3)}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的奇函数f(x)满足f(x-2)=-f(x),则f(2006)的值为(  )
A.2006B.1003C.0D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足$\underset{lim}{n→∞}$bn=4?若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2014)-(S1+S2+…+S2014).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆心在直线2x+y=0上,且与直线x-y+1=0切与点P(2,-1)的圆的标准方程(x-1)2+(y+2)2=2.

查看答案和解析>>

同步练习册答案