精英家教网 > 高中数学 > 题目详情

【题目】如图,四棱锥中,底面为矩形,平面的中点.

(1)证明://平面

(2)设,三棱锥的体积,求到平面的距离.

【答案】(1)详见解析(2)

【解析】

试题分析:(1)连结BD、AC相交于O,连结OE,则PBOE,由此能证明PB平面ACE.(2)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出A到平面PBD的距离

试题解析:(I)设BD交AC于点O,连结EO。

因为ABCD为矩形,所以O为BD的中点。

又E为PD的中点,所以EO∥PB

又EO平面AEC,PB平面AEC

所以PB∥平面AEC。

(II)

,可得.

由题设,所以

所以到平面的距离为

法2:等体积法

,可得.

由题设,得BC

假设到平面的距离为d,

又因为PB=

所以

又因为(或),

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinωxcosωx+2sin2ωx﹣(ω>0)的最小正周期为π.

(1)求函数f(x)的单调增区间;

2)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数y=g(x)的图象,若y=g(x)在[0,b](b>0)上至少含有10个零点,求b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数,且曲线在坐标原点处的切线相同.

1的最小值;

2时,恒成立,试求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知直三棱柱中,是棱上的一点,分别为的中点.

1求证:平面

2的中点时,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,PAB是正三角形,四边形ABCD是矩形,且平面PAB平面ABCD,PA=2,PC=4.

(Ⅰ)若点E是PC的中点,求证:PA平面BDE;

(Ⅱ)若点F在线段PA上,且FA=λPA,当三棱锥B﹣AFD的体积为时,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在ABC中,a=b·cos C+c·cos B,其中a,b,c分别为角A,B,C的对边,在四面体PABC中,S1,S2,S3,S分别表示PAB,PBC,PCA,ABC的面积,α,β,γ依次表示面PAB,面PBC,面PCA与底面ABC所成二面角的大小.写出对四面体性质的猜想,并证明你的结论

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地,东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1/吨和1.5/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8/吨和1.6/吨.要使总运费最少,煤矿应怎样编制调运方案?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)当时,求函数的最大值;

2)函数轴交于两点,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数据是郑州市普通职工个人的年收入,若这个数据的中位数为,平均数为,方差为,如果再加上世界首富的年收入,则这个数据中,下列说法正确的是( )

A. 年收入平均数大大增大,中位数一定变大,方差可能不变

B. 年收入平均数大大增大,中位数可能不变,方差变大

C. 年收入平均数大大增大,中位数可能不变,方差也不变

D. 年收入平均数可能不变,中位数可能不变,方差可能不变

查看答案和解析>>

同步练习册答案