分析 (Ⅰ)通过讨论x的范围,得到关于x的不等式组,解出即可;
(Ⅱ)问题转化为{y|y=f(x)}⊆{y|y=g(x)},分别求出f(x),g(x)的最小值,得到关于a的不等式,解出即可.
解答 解:(Ⅰ)当a=1时,f(x)<6,即|2x-1|+|2x+3|<6,
即$\left\{\begin{array}{l}x≤-\frac{3}{2}\\ 1-2x-2x-3<6\end{array}\right.$或$\left\{\begin{array}{l}-\frac{3}{2}<x<\frac{1}{2}\\ 2x+3+1-2x<6\end{array}\right.$或$\left\{\begin{array}{l}x≥\frac{1}{2}\\ 2x-1+2x+3<6.\end{array}\right.$,
∴$-2<x≤-\frac{3}{2}$或$-\frac{3}{2}<x<\frac{1}{2}$或$\frac{1}{2}≤x<1$,
∴-2<x<1,
所以不等式f(x)<6的解集为{x|-2<x<1}.
(Ⅱ)对任意x1∈R,都有x2∈R,使得f(x1)=g(x2)成立,
则有{y|y=f(x)}⊆{y|y=g(x)},
又f(x)=|2x-a|+|2x+3|≥|(2x-a)-(2x+3)|=|a+3|,
g(x)=|x-1|+2≥2,从而|a+3|≥2,
解得a≤-5或a≥-1,
故a∈(-∞,-5]∪[-1,+∞).
点评 本题考查了解绝对值不等式问题,考查分类讨论思想以及函数的最值问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 6 斤 | B. | 9 斤 | C. | 9.5斤 | D. | 12 斤 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\vec a-2\vec b$ | B. | $\overrightarrow{a}$-4$\vec b$ | C. | $\vec a$ | D. | $\vec b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com