精英家教网 > 高中数学 > 题目详情
16.设函数f(x)=$\left\{\begin{array}{l}{{3}^{-x}-2(x≤0)}\\{x-1(x>0)}\end{array}\right.$,若f(x0)>1,则x0的取值范围是(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)∪(2,+∞)D.(-∞,-2)∪(0,+∞)

分析 由分段函数式,讨论x0≤0,x0>0,运用指数函数的单调性,解不等式,即可得到所求解集.

解答 解:若x0≤0,f(x0)>1即为3${\;}^{-{x}_{0}}$-2>1,
即3${\;}^{-{x}_{0}}$>3,可得-x0>1,即x0<-1;
若x0>0,f(x0)>1即为x0-1>1,
解得x0>2.
综上可得,x0的取值范围是(-∞,-1)∪(2,+∞).
故选:C.

点评 本题考查分段函数的运用:解不等式,注意运用分类讨论的思想方法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+2y≤2}\\{x+y≥0}\\{x≤4}\end{array}\right.$,则z=3x-y的最大值为(  )
A.-6B.10C.12D.16

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.不等式-x2-2x+3≥0的解集为(  )
A.{x|-1≤x≤3}B.{x|x≥3或x≤-1}C.{x|-3≤x≤1}D.{x|x≤-3或x≥1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}中,a1=1,an+1=$\frac{2{a}_{n}}{2+{a}_{n}}$(n∈N+).
(Ⅰ)求a2,a3,a4的值,猜想数列{an}的通项公式;
(Ⅱ)运用(Ⅰ)中的猜想,写出用三段论证明数列{$\frac{1}{{a}_{n}}$}是等差数列时的大前提、小前提和结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C1:x2+y2=4与x轴左右交点分别为A1、A2,过点A1的直线l1与过点A2的直线l2相交于点D,且l1与l2斜率的乘积为-$\frac{1}{4}$.
(Ⅰ)求点D的轨迹C2方程;
(Ⅱ)若直线l:y=kx+m不过A1、A2且与轨迹C2仅有一个公共点,且直线l与圆C1交于P、Q两点.求△POA1与△QOA2的面积之和的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若x,y满足$\left\{\begin{array}{l}{y≤1}\\{x-y-1≤0}\\{x+y-1≥0}\end{array}\right.$,则z=$\sqrt{3}$x+y的最大值为2$\sqrt{3}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)为偶函数,当x≤0时,f(x)=e-x-2-x,则曲线y=f(x)在点(2,3)处的切线方程是2x-y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此做了四次实验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程y=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并在坐标系中画出回归直线;
(3)试预测加工6个零件需要多少时间?
(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.关于函数y=$\sqrt{x+1}$-$\sqrt{x-1}$的最值的说法正确的是(  )
A.既没有最大值也没有最小值B.没有最小值,只有最大值$\sqrt{2}$
C.没有最大值,只有最小值$\sqrt{2}$D.既有最小值0,又有最大值$\sqrt{2}$

查看答案和解析>>

同步练习册答案