精英家教网 > 高中数学 > 题目详情

【题目】如图(1)是一个水平放置的正三棱柱 是棱的中点,正三棱柱的主视图如图(2).

(1)图(1)中垂直于平面的平面有哪几个(直接写出符合要求的平面即可,不必说明或证明)

(2)求正三棱柱的体积;

(3)证明: 平面.

【答案】(1)详见解析;(2;(3)详见解析.

【解析】试题分析:(1)由于几何体为正三棱柱,故两个底面和侧面垂直,由于平面,所以面也和平面垂直.(2)先计算得底面边长为,由三视图可知高为,由此求得几何体的体积.(3)连接,连接,利用三角形的中位线证明,从而证明线面平行.

试题解析:

(1)平面、平面、平面

(2)依题意,在正三棱柱中, 从而.

所以正三棱柱的体积 .

(3)连接连接.

因为是正三棱柱的侧面,所以是矩形, 的中点.

所以的中位线,

因为平面平面,所以平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若,过分别作曲线的切线,且关于轴对称,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)设函数,若在区间上单调,求实数的取值范围;

(2)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一张长为,宽为)的长方形铁皮,准备用它做成一个无盖长方体铁皮容器,要求材料利用率为100%,不考虑焊接处损失.如图,在长方形的一个角上剪下一块边长为的正方形铁皮,作为铁皮容器的底面,用余下材料剪拼后作为铁皮容器的侧面,设长方体的高为,体积为.

(Ⅰ)求关于的函数关系式;

(Ⅱ)求该铁皮容器体积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程是,圆的参数方程是为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(1)分别求直线和圆的极坐标方程;

(2)射线(其中)与圆交于两点,与直线交于点,射线与圆交于两点,与直线交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)当时,求函数处的切线方程;

(Ⅱ)令,求函数的极值;

(Ⅲ)若,正实数 满足,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种产品的月固定成本为10(万元),每生产件,需另投入成本为(万元).当月产量不足30件时, (万元);当月产量不低于30件时, (万元).因设备问题,该厂月生产量不超过50件.现已知此商品每件售价为5万元,且该厂每个月生产的商品都能当月全部销售完.

(1)写出月利润(万元)关于月产量(件)的函数解析式;

(2)当月产量为多少件时,该厂所获月利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设人的某一特征(如眼睛的大小)是由他的一对基因所决定,d表示显性基因,r表示隐性基因,则具有dd基因的人为纯显性,具有rr基因的人为纯隐性,具有rd基因的人为混合性,纯显性与混合性的人都显露显性基因决定的某一特征,孩子从父母身上各得到一个基因,假定父母都是混合性,:

(1)1个孩子显露显性特征的概率是多少?

(2)“该父母生的2个孩子中至少有1个显露显性特征”,这种说法正确吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四个命题:

①在回归分析中, 可以用来刻画回归效果, 的值越大,模型的拟合效果越好;

②在独立性检验中,随机变量的值越大,说明两个分类变量有关系的可能性越大;

③在回归方程中,当解释变量每增加1个单位时,预报变量平均增加1个单位;

④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;

其中真命题是:

A. ①④ B. ②④ C. ①② D. ②③

查看答案和解析>>

同步练习册答案