【题目】已知函数.
(1).若函数处有极值10,求的解析式;
(2).当时,若函数在上是单调增函数,求b的取值范围.
【答案】(1)(2)
【解析】
(1)求得函数的导数,根据题意列出方程组,求得的值,进行验证,求得的值,即可得到函数的解析式;
(2)当时,求得,根二次函数的性质,列出不等式,即可求解.
(1)由题意,因为,所以,
由已知条件,得,即
解得或
下面分别检验:
①当,时,,,
令,即,解得,,
列表:
x | 1 | ||||
+ | 0 | - | 0 | + | |
增函数 | 极大值 | 减函数 | 极小值10 | 增函数 |
由上表可知,在处取极小值10,符合题意.
②当,时,,,为增函数,不合题意,舍去.
所以当,时,为所求函数的解析式.
综上所述,所求函数的解析式为.
(2)当时,,可得,
此导函数是二次函数,二次项系数大于0,且对称轴为,
因为函数在上单调递增,所以在上恒成立,
也就是,即,解得,
所以,b的取值范围是[-4,+∞).
科目:高中数学 来源: 题型:
【题目】底面为菱形的直棱柱
中,
分别为棱
的中点.
(1)在图中作一个平面
,使得
,且平面
.(不必给出证明过程,只要求作出
与直棱柱
的截面).
(2)若
,求平面
与平面
的距离
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙、丁四名同学在回忆同一个函数,甲说:“我记得该函数定义域为,还是奇函数”.乙说:“我记得该函数为偶函数,值域不是”.丙说:“我记得该函数定义域为,还是单调函数”.丁说:“我记得该函数的图象有对称轴,值域是”,若每个人的话都只对了一半,则下列函数中不可能是该函数的是( )
A. B.
C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,,其中为实常数.
(1)若函数在区间[2,3]上为单调递增函数,求的取值范围;
(2)高函数在区间上的最小值为,试讨论函数,的零点的情况.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面推理过程中使用了类比推理方法,其中推理正确的个数是
①“数轴上两点间距离公式为,平面上两点间距离公式为”,类比推出“空间内两点间的距离公式为“;
②“代数运算中的完全平方公式”类比推出“向量中的运算仍成立“;
③“平面内两不重合的直线不平行就相交”类比到空间“空间内两不重合的直线不平行就相交“也成立;
④“圆上点处的切线方程为”,类比推出“椭圆 上点处的切线方程为”.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司计划购买1台机器,该种机器使用三年后即被淘汰.在购进机器时,可以一次性额外购买几次维修服务,每次维修服务费用200元,另外实际维修一次还需向维修人员支付小费,小费每次50元.在机器使用期间,如果维修次数超过购机时购买的维修服务次数,则每维修一次需支付维修服务费用500元,无需支付小费.现需决策在购买机器时应同时一次性购买几次维修服务,为此搜集并整理了100台这种机器在三年使用期内的维修次数,得下面统计表:
维修次数 | 8 | 9 | 10 | 11 | 12 |
频数 | 10 | 20 | 30 | 30 | 10 |
记x表示1台机器在三年使用期内的维修次数,y表示1台机器在维修上所需的费用(单位:元),表示购机的同时购买的维修服务次数.
(1)若=10,求y与x的函数解析式;
(2)若要求“维修次数不大于”的频率不小于0.8,求n的最小值;
(3)假设这100台机器在购机的同时每台都购买10次维修服务,或每台都购买11次维修服务,分别计算这100台机器在维修上所需费用的平均数,以此作为决策依据,购买1台机器的同时应购买10次还是11次维修服务?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】207年8月8日晚我国四川九赛沟县发生了7.0级地震,为了解与掌握一些基本的地震安全防护知识,某小学在9月份开学初对全校学生进行了为期一周的知识讲座,事后并进行了测试(满分100分),根据测试成绩评定为“合格”(60分以上包含60分)、“不合格”两个等级,同时对相应等级进行量化:“合格”定为10分,“不合格”定为5分.现随机抽取部分学生的答卷,统计结果及对应的频率分布直方图如图所示:
等级 | 不合格 | 合格 | ||
得分 | ||||
频数 | 6 | 24 |
(1)求的值;
(2)用分层抽样的方法,从评定等级为“合格”和“不合格”的学生中抽取10人进行座谈,现再从这10人中任选4人,记所选4人的量化总分为,求的分布列及数学期望;
(3)设函数(其中表示的方差)是评估安全教育方案成效的一种模拟函数.当时,认定教育方案是有效的;否则认定教育方案应需调整,试以此函数为参考依据.在(2)的条件下,判断该校是否应调整安全教育方案?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.
(1)若则仓库的容积是多少?
(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l:-y+3+=0和圆:++8x+F=0.若直线l被圆截得的弦长为.
(1)求圆的方程;
(2)设圆和x轴相交于A,B两点,点P为圆上不同于A,B的任意一点,直线PA,PB交y轴于M,N两点.当点P变化时,以MN为直径的圆是否经过圆内一定点?请证明你的结论;
(3)若△RST的顶点R在直线x=-1上,点S,T在圆上,且直线RS过圆心,∠SRT=,求点R的纵坐标的范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com