精英家教网 > 高中数学 > 题目详情
已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.
【答案】分析:(1)由函数形式知,此为一幂函数,又f(2)<f(3),可知函数在[2,3]是增函数,由分析知,函数是一增函数,故指数为正,即-k2+k+2>0,再结合k为整数求解即可
(2)由(1)知函数解析式为f(x)=x2,将其代入函数g(x)知其也为一二次函数,下研究g(x)在区间[-1,2]上的最值,结合值域为建立关于参数p的方程求参数即可.若能求出,则说明存在,否则,不存在.
解答:解:(1)已知函数
∵f(2)<f(3),∴-k2+k+2>0,即k2-k-2<0,
∵k∈Z,∴k=0或1
(2)存在p=2,使得结论成立,证明如下:
由(1)知函数解析式为f(x)=x2

①当,即时,

②当时,解得-<p<0,
∵p>0,∴这样的p不存在.
③当,即时,
,解之得,这样的p不存在.
综①②③得,p=2.
即当p=2时,结论成立.
点评:本题考点是二次函数的性质,考查利用二次函数的性质判断出函数的最值,利用最值建立方程求参数,本题是一存在性问题,考查思维的严密性综合性较强,分类时要做到不重不漏,严谨做题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数数学公式,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为数学公式.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年湖南省岳阳一中高三(上)第二次月考数学试卷(文科)(解析版) 题型:解答题

已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:江苏省泰州市中学高三数学一轮复习过关测试卷:函数(1)(解析版) 题型:解答题

已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年山东省烟台市莱州一中高考数学一模试卷(文科)(解析版) 题型:解答题

已知函数,且f(2)<f(3)
(1)求k的值;
(2)试判断是否存在正数p,使函数g(x)=1-p•f(x)+(2p-1)x在区间[-1,2]上的值域为.若存在,求出这个p的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案