精英家教网 > 高中数学 > 题目详情
11.如图,平面α⊥平面β,平面α∩平面β=AB,P∈AB,C∈α,D∈β,且∠CPB=∠DPB=45°,则∠CPD=60°.

分析 作CO⊥AB,交AB于O,在平面β内作OD⊥AB,交PD于点D,连结CD,由已知推导出△COP,△DOP,△COD是全等的等腰直角三角形,由此能求出∠CPD.

解答 解:作CO⊥AB,交AB于O,在平面β内作OD⊥AB,交PD于点D,连结CD,
∵平面α⊥平面β,平面α∩平面β=AB,P∈AB,C∈α,D∈β,且∠CPB=∠DPB=45°,
∴∠COD是二面角α-AB-β的平面角,∴∠COD=90°,
∴△COP,△DOP,△COD是全等的等腰直角三角形,
∴PC=PD=CD,
∴∠CPD=60°.
故答案为:60°.

点评 本题考查角的大小的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知全集U=R,集合A={x|x+1<0},B={x|x2+3x<0},则 (∁UA)∩B等于(  )
A.{x|-3<x<0}B.{x|-1≤x<0}C.{x|x<-1}D.{x|-1<x<0}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知二面角α-l-β,空间中有一点A,且AC⊥α于C,AB⊥β于B,若∠BAC=75°,则二面角α-l-β的大小为75°或105°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在矩形ABCD中,AB=3,BC=4,PA⊥平面ABCD,且PA=1,PE⊥DB,垂足为E.则PE的长为$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直三棱柱ABC-A1B1C1中,AC=4,CB=AA1=2,AB=2$\sqrt{3}$ E,F,G分别是A1C1,BC,AA1的中点.
(1)证明:平面AEB⊥平面BB1CC1
(2)证明:C1F∥平面ABE
(3)求三棱锥C1-B1GF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.小颖看到一卷卫生纸上标明了重量,她想验证一下,就来到物理实验室,用天平称后,正好是180克.接下来她又想知道这卷卫生纸的长度和单层卫生纸的厚度,但又不想将卫生纸全都展开.请你利用物理实验室和包装上的信息,为小颖设计一种实现想法的方案.
产品名称:180克维达卫生纸
产品编号:v4131
主要原料:100%原生木浆
执行标准:GB20810   优等品(合格)
生产日期:见包装     保质期:三年
规格:3层   138mm×104mm/节  净含量:180克

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=2sin(2x+$\frac{π}{6}$).
(1)求函数的对称轴方程;
(2)求x∈[$\frac{π}{12}$,$\frac{π}{3}$]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=|sin($\frac{π}{6}$-2x)+sin2x|的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知下列三角函数,其中函数值为负的有(  )
①sin(-680°);②cos(-730°);③tan(320°);④sin(cos2)
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案