精英家教网 > 高中数学 > 题目详情
1.若函数$y=m{(\frac{1}{4})^x}-{(\frac{1}{2})^x}$+1仅有一个零点,则实数m 的取值范围是m≤0或$m=\frac{1}{4}$.

分析 令t=${(\frac{1}{2})}^{x}$,则t>0,y=mt2-t+1,若函数$y=m{(\frac{1}{4})^x}-{(\frac{1}{2})^x}$+1仅有一个零点,则mt2-t+1=0仅有一个正根,分类讨论,综合可得答案.

解答 解:令t=${(\frac{1}{2})}^{x}$,则t>0,y=mt2-t+1,
若函数$y=m{(\frac{1}{4})^x}-{(\frac{1}{2})^x}$+1仅有一个零点,
则mt2-t+1=0仅有一个正根,
当m<0时,mt2-t+1=0有两个异号的根,满足条件;
当m=0时,-t+1=0有一个正根,满足条件;
当m>0时,若mt2-t+1=0仅有一个正根,则△=1-4m=0,解得:m=$\frac{1}{4}$
综上可得:m≤0或$m=\frac{1}{4}$,
故答案为:m≤0或$m=\frac{1}{4}$

点评 本题考查的知识点是函数零点的个数及判定,转化思想,换元法,分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知数列${a_n}=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}$(n∈N*).
(1)证明:当n≥2,n∈N*时,${a_{2^n}}>\frac{n+2}{2}$;
(2)若a>1,对于任意n≥2,不等式${a_{2n}}-{a_n}>\frac{7}{12}[{log_{(a+1)}}x-{log_a}x+1]$恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列说法正确的是(  )
A.命题“若x2=1,则x=1”的否命题为“若x2=1,则x≠1”
B.命题“?x≥0,x2+x-1<0”的否定是“?x<0,x2+x-1<0”
C.“x=-1”是“x2-5x-6=0”的必要不充分条件
D.命题“若x=y,则sinx=siny”的逆否命题为真命题.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知a,b,c分别是△ABC的三个内角A、B、C的对边,b=1,c=2,A=60°,则边a=$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知全集U=R,集合A={x|x2-2x≤0},B={x|y=lg(x-1)},则集合A∩(∁UB)=(  )
A.{x|x<0,或x>2}B.{x|0<x<2}C.{x|0≤x<1}D.{x|0≤x≤1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)已知cosα+2sinα=-$\sqrt{5}$,求 tanα 的值.
(2)已知tan(π+α)=$\frac{1}{2}$,求$\frac{sin(α-π)cos(α-\frac{π}{2})-co{s}^{2}(-π-α)}{1-sin(-π-α)sin(-\frac{π}{2}+α)+co{s}^{2}(α+π)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=sin(ωx+ϕ)$(ω>0,0<ϕ<\frac{π}{2})$,f(0)=$\frac{{\sqrt{2}}}{2}$,且对任意${x_1},{x_2}∈(\frac{π}{2},π)$均满足$\frac{{{x_1}-{x_2}}}{{f({x_1})-f({x_2})}}<0({x_1}≠{x_2})$,则ω的取值范围是$\frac{1}{2}$≤ω≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=|x-t|+$\frac{t}{x}$(x>0);
(1)判断函数y=f(x)在区间(0,t]上的单调性,并证明;
(2)若函数y=f(x)的最小值为与t无关的常数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,四棱锥P-ABCD中,所有棱长均为2,O是底面正方形ABCD中心,E为PC中点,则直线OE与直线PD所成角为(  )
A.30°B.60°C.45°D.90°

查看答案和解析>>

同步练习册答案