精英家教网 > 高中数学 > 题目详情
6.设f(x)=$\left\{\begin{array}{l}{3x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{2-{x}^{2},x≤1}\\{2,x>1}\end{array}\right.$,则f[g(π)]=7,g[f(2)]=2.

分析 由已知中分段函数f(x)=$\left\{\begin{array}{l}{3x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{2-{x}^{2},x≤1}\\{2,x>1}\end{array}\right.$,代入即可得到答案.

解答 解:∵f(x)=$\left\{\begin{array}{l}{3x+1,x≥0}\\{{x}^{2},x<0}\end{array}\right.$,g(x)=$\left\{\begin{array}{l}{2-{x}^{2},x≤1}\\{2,x>1}\end{array}\right.$,
∴f[g(π)]=f(2)=7,
g[f(2)]=g(7)=2.
故答案为:7,2

点评 本题考查的知识点是分段函数的应用,分段函数求值,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知a=$\sqrt{2}$,c=2,∠A=30°,则∠C=(  )
A.45°B.60°C.45°或135°D.60°或120°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设3≤a≤b≤c≤d≤e≤5,则F=(a+b+c+d+e)($\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{1}{e}$)的最小值为25.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知a,b,c是有理数,且满足$\frac{|a|}{a}$+$\frac{|b|}{b}$+$\frac{|c|}{c}$=1,求代数式5-$\frac{abc}{|abc|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,已知sinA:sinB:sinC=1:2:$\sqrt{3}$,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知复数z=(|3m-1|-2)+(m-1)i(m∈R)在复平面上对应的点位于第四象限,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求证:$\frac{1}{1•\sqrt{1}}$+$\frac{1}{2•\sqrt{2}}$+$\frac{1}{3•\sqrt{3}}$+…+$\frac{1}{n•\sqrt{n}}$<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知集合A={x|x-0.5(a+1)2≤0.5(a-1)2},集合B={x|x2-3ax-3x+6a+2≤0},若A?B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若直线m的倾斜角的余弦值为$\frac{1}{2}$,且直线n过点P($\sqrt{3}$,0)且与m垂直,则直线n的方程为$\sqrt{3}$x+3y-3=0.

查看答案和解析>>

同步练习册答案