精英家教网 > 高中数学 > 题目详情
6.y=f(x)定义域为R,且对任意x∈R都有f(x+1)=$\frac{f(x)+1}{1-f(x)}$,若f(2)=1-$\sqrt{2}$,则f(2009)=$-\sqrt{2}-1$.

分析 由已知中对任意x∈R都有f(x+1)=$\frac{f(x)+1}{1-f(x)}$,f(2)=1-$\sqrt{2}$,迭代可得,f(x)的值以4为周期呈周期性变化,进而得到答案.

解答 解:∵对任意x∈R都有f(x+1)=$\frac{f(x)+1}{1-f(x)}$,f(2)=1-$\sqrt{2}$,
∴$f(3)=\frac{f(2)+1}{1-f(2)}$=$\sqrt{2}$-1,
$f(4)=\frac{f(3)+1}{1-f(3)}$=$\sqrt{2}+1$,
$f(5)=\frac{f(4)+1}{1-f(4)}$=$-\sqrt{2}-1$,
$f(6)=\frac{f(5)+1}{1-f(5)}$=$-\sqrt{2}+1$,
$f(7)=\frac{f(6)+1}{1-f(6)}$=$\sqrt{2}$-1,
$f(8)=\frac{f(7)+1}{1-f(7)}$=$\sqrt{2}+1$,

故f(x)的值以4为周期呈周期性变化,
由2009÷4=502…1,
故f(2009)=f(1)=f(5)=$-\sqrt{2}-1$,
故答案为:$-\sqrt{2}-1$

点评 本题考查的知识点是函数的值,函数的周期性,其中分析出f(x)的值以4为周期呈周期性变化,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知f(x)是二次函数.若f(0)=0,f(x+1)=f(x)+x+1,
(1)求f(x)的解析式.
(2)若函数g(x)=f(x)+$\frac{1}{2}$x2+(2a-$\frac{1}{2}$)x+2,x∈[-5,5],求g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\left\{\begin{array}{l}{x+2(x≤-2)}\\{{x}^{2}(-2<x<2)}\\{2x(x≥2)}\end{array}\right.$
(1)求f(-3),f[f(-$\sqrt{3}$)]的值;
(2)若f(a)=3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.函数y=2x2-x-1的值域是[-$\frac{9}{8}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二次函数f(x)=ax2+bx+c满足f(1)=0,b=2c.
(1)求函数f(x)的单调区间;
(2)若函数f(x)的图象在y轴上的交点的纵坐标是正数,比较f(0),f($\frac{1}{2}$),f($\frac{\sqrt{2}}{2}$)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知二次函数f(x)=x2+ax+b,A={x|f(x)=2x}={2},试求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求下列抛物线的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况画出其图象.
(1)y=x2-2x-3 
(2)y=1+6x-x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=x${\;}^{\frac{1}{3}}$-($\frac{1}{3}$)x有1个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知由2x,x2-x组成的集合有且只有4个子集,则实数x的取值范围(  )
A.x=0或x=3B.x≠0或x≠3C.x≠0且x≠3D.不能确定

查看答案和解析>>

同步练习册答案