精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax-1+4(a>0,a≠1)的反函数y=f-1(x)的图象经过一个定点,这个定点的坐标为


  1. A.
    (1,4)
  2. B.
    (1,5)
  3. C.
    (5,1)
  4. D.
    (4,1)
C
分析:由题意令x-1=0,解得x=1,再代入函数解析式求出y的值,得到函数f(x)图象恒过的定点,然后根据原函数与反函数图象的关系可得到结论.
解答:令x-1=0,解得x=1,则x=1时,函数y=a0+4=5,
即函数f(x)图象恒过一个定点(1,5).
∴反函数y=f-1(x)的图象经过定点(5,1).
故选C.
点评:本题主要考查了指数函数的单调性与特殊点,以及原函数与反函数图象的关系,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案