精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的几何体中,四边形ABCD为正方形, 为直角三角形, ,且.

1)证明:平面平面

2)若AB=2AE,求异面直线BEAC所成角的余弦值.

【答案】(1)详见解析;(2.

【解析】试题分析:(1)由已知可知AEAB,又AEAD,所以AE平面ABCD,所以AEDB,又ABCD为正方形,所以DBAC,所以DB平面AEC,而BD平面BED,故有平面AEC平面BED.

2)作DE的中点F,连接OFAF,由于ODB的中点,且OFBE,可知FOA或其补角是异面直线BEAC所成的角;设正方形ABCD的边长为2,则,由于AB=2AE

可知,则,又= ,由余弦定理的推理FOA==,故异面直线BEAC所成的角的余弦值为.

试题解析:(1)由已知有AE⊥AB,又AE⊥AD

所以AE⊥平面ABCD,所以AE⊥DB3

ABCD为正方形,所以DB⊥AC4

所以DB平面AECBDBED

故有平面AEC⊥平面BED. 6

2)作DE的中点F,连接OFAF

∵ODB的中点,

∴OF∥BE∴∠FOA或其补角是异面直线BEAC所成的角。 8

设正方形ABCD的边长为2

9

AB=2AE

10

= ,FOA==

异面直线BEAC所成的角的余弦值为12.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(1) 若函数f(x)=|4x-x2|+a有4个零点,求实数a的取值范围;

(2) 已知函数f(x)=x2+2mx+3m+4.

① 若函数f(x)有且仅有一个零点,求实数m的值;

若函数f(x)有两个零点且两个零点均比-1大,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校90名专职教师的年龄状况如下表:

年龄

35岁以下

35~50岁

50岁以上

人数

45

30

15

现拟采用分层抽样的方法从这90名专职教师中抽取6名老、中、青教师下乡支教一年.

(Ⅰ)求从表中三个年龄段中分别抽取的人数;

(Ⅱ)若从抽取的6个教师中再随机抽取2名到相对更加边远的乡村支教,计算这两名教师至少有一个年龄是35~50岁教师的概率。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若上单调递增求实数的取值范围

(2)是否存在实数使得函数上的最小值为1?若存在,求出实数的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数),以直角坐标系原点为极点,以轴正半轴为极轴,建立极坐标系.

(1)求曲线的极坐标方程,并说明其表示什么轨迹;

(2)若直线的极坐标方程为,求直线被曲线截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,椭圆的离心率为 是椭圆的右焦点, 的斜率为 为坐标原点.

(1)求椭圆的方程;

(2)设过点的动直线交于 两点,当面积最大时,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:

X

1

2

3

4

5

频率

a

02

045

b

c

1)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求abc的值;

2)在(1)的条件下,将等级系数为43件日用品记为,等级系数为52件日用品记为,现从5件日用品中任取两件(假定每件日用品被取出的可能性相同),求这两件日用品的等级系数恰好相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)图象的一条对称轴是直线

(1)求φ;

(2)求函数y=f(x)的单调递增区间;

(3)求函数y=f(x)在区间上的值域。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列是无穷数列,且各项均为互不相同的正整数,其前项和为,数列满足.

(1)若,求的值;

(2)若数列为等差数列,求

(3)在(1)的条件下,求证:数列中存在无穷多项(按原来的顺序)成等比数列.

查看答案和解析>>

同步练习册答案