【题目】如图,在三棱锥中,与都为等边三角形,且侧面与底面互相垂直,为的中点,点在线段上,且,为棱上一点.
(1)试确定点的位置,使得平面;
(2)在(1)的条件下,求二面角的余弦值.
科目:高中数学 来源: 题型:
【题目】如图,已知动圆过定点且与轴相切,点关于圆心的对称点为,点的轨迹为
(1)求曲线的方程;
(2)一条直线经过点,且交曲线于、两点,点为直线上的动点.
①求证:不可能是钝角;
②是否存在这样的点,使得是正三角形?若存在,求点的坐标;否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是(为参数, ).
(1)求曲线的直角坐标方程;
(2)设直线与曲线交于两点,且线段的中点为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系并取相同的单位长度,曲线的极坐标方程为.
(1)把曲线的方程化为普通方程,的方程化为直角坐标方程
(2)若曲线,相交于两点,的中点为,过点作曲线的垂线交曲线于两点,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别为椭圆的左右顶点,设点为直线上不同于点的任意一点,若直线、分别与椭圆相交于异于、的点、.
(1)判断与以为直径的圆的位置关系(内、外、上)并证明.
(2)记直线与轴的交点为,在直线上,求点,使得.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com