【题目】如图 1,在直角梯形中, ,且.现以为一边向形外作正方形,然后沿边将正方形翻折,使平面与平面垂直, 为的中点,如图 2.
(1)求证: 平面;
(2)求证: 平面;
(3)求点到平面的距离.
【答案】(1)见解析;(2)见解析;(3).
【解析】试题分析:(1)在平面内找到与直线平行的直线,通过三角形的中位线证明直线AB与直线MN平行且相等,从而证明,可证得直线平面.
(2)通过证明直线BC垂直于平面BDE内的两条相交直线BD,ED可证得直线平面.
(3)利用等体积法,可求得点D 到平面BEC的距离.
试题解析: (1)证明:取中点,连结.
在中, 分别为的中点,
所以,且.
由已知,
所以四边形为平行四边形.
所以.
又因为平面,且平面,
所以平面.
(2)证明:在正方形中, ,
又因为平面平面,且平面平面,
所以平面.
所以
在直角梯形中, ,可得.
在中, .
所以.
所以平面.
(3)由(2)知,
所以,又因为平面
又.
所以, 到面的距离为
科目:高中数学 来源: 题型:
【题目】如图,在直角梯形中, , , , , 是的中点, 是与的交点,将沿折起到的位置,如图2.
图1 图2
(1)证明: 平面;
(2)若平面平面,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知定点, 为圆上任意一点,线段上一点满足,直线上一点,满足.
(1)当在圆周上运动时,求点的轨迹的方程;
(2)若直线与曲线交于两点,且以为直径的圆过原点,求证:直线与不可能相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在棱长为1的正方体中,点, 分别是侧面与底面的中心,则下列命题中错误的个数为( )
①平面; ②异面直线与所成角为;
③与平面垂直; ④.
A. 0 B. 1 C. 2 D. 3
【答案】A
【解析】对于①,∵DF,DF平面, 平面,∴平面,正确;
对于②,∵DF,∴异面直线与所成角即异面直线与所成角,△为等边三角形,故异面直线与所成角为,正确;
对于③,∵⊥, ⊥CD,且CD=D,∴⊥平面,即⊥平面正确;
对于④,,正确,
故选:A
【题型】单选题
【结束】
8
【题目】已知函数在区间上单调递增,则实数的取值范围是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直角坐标系xoy中,其中A(0,0),B(2,0),C(1,1),D(0,1),图中圆弧所在圆的圆心为点C,半径为,且点P在图中阴影部分(包括边界)运动.若,其中,则 的取值范围是( )
A. [2,3+] B. [2,3+] C. [3-, 3+] D. [3-, 3+]
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,椭圆的长轴长是短轴长的2倍,是椭圆的右焦点,直线的斜率为,为坐标原点.
(1)求椭圆的方程;
(2)设过点的动直线与椭圆相交于两点.当的面积最大时,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为对南康区和于都县两区县某次联考成绩进行分析,随机抽查了两地一共10000名考生的成绩,根据所得数据画了如下的样本频率分布直方图.
(1)求成绩在的频率;
(2)根据频率分布直方图算出样本数据平均数;
(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这10000人中用分层抽样方法抽出20人作进一步分析,则成绩在的这段应抽多少人?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知圆C与y轴相切于点T(0,2),与x轴的正半轴交于两点 (点在点的左侧),且.
(1)求圆C的方程;(2)过点任作一直线与圆O: 相交于两点,连接,求证: 定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在几何体中,四边形为菱形,对角线与的交点为,四边形为梯形, .
(Ⅰ)若,求证: 平面;
(Ⅱ)求证:平面平面;
(Ⅲ)若, , ,求与平面所成角.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com