【题目】设函数,,其中,e是自然对数的底数.
(1)若在上存在两个极值点,求a的取值范围;
(2)当,设,,若在上存在两个极值点,,且,求证: .
【答案】(1);(2)证明见解析.
【解析】
(1)在上存在两个极值点,则有两根,再分离参数,借助导数研究即可;
(2)要证即证,在上存在两个极值点,,且,即有两个零点,,可得,设,则,,即证,,即当时,,设函数,,利用导数求其单调性及函数的最值,即可得证.
解:(1),由题意可知,在上有两个不同的实数根,
即,只需函数和图象有两个交点,
,易知在上为减函数,且,
当时,,为增函数;当时,,为减函数;
所以,所以,又当,,,,
要使在上存在两个极值点,则.
故的取值范围为.
(2)易得,
在上存在两个极值点,,且
有两个零点,,
则,解得
于是
又,设则,因此,
要证,即证,
即当时,,设函数,,则
所以,为上的增函数,又,因此
于是,当时,有,
所以,有成立,即,得证
科目:高中数学 来源: 题型:
【题目】如图,正四棱柱ABCD﹣A1B1C1D1中,O是BD的中点,E是棱CC1上任意一点.
(1)证明:BD⊥A1E;
(2)如果AB=2,,OE⊥A1E,求AA1的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的数列的前项和为且满足:
(1)求数列的通项公式;
(2)设求的值;
(3)是否存在大于2的正整数使得?若存在,求出所有符合条件的若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为正方形,底面,,为线段的中点,若为线段上的动点(不含).
(1)平面与平面是否互相垂直?如果是,请证明;如果不是,请说明理由;
(2)求二面角的余弦值的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】用一个长为,宽为的矩形铁皮(如图1)制作成一个直角圆形弯管(如图3):先在矩形的中间画一条曲线,并沿曲线剪开,将所得的两部分分别卷成体积相等的斜截圆柱状(如图2),然后将其中一个适当翻转拼接成直角圆形弯管(如图3)(不计拼接损耗部分),并使得直角圆形弯管的体积最大;
(1)求直角圆形弯管(图3)的体积;
(2)求斜截面椭圆的焦距;
(3)在相应的图1中建立适当的坐标系,使所画的曲线的方程为,求出方程并画出大致图像;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD是菱形,∠BAD=60°,AB=2,PD=,O为AC与BD的交点,E为棱PB上一点.
(1)证明:平面EAC⊥平面PBD;
(2)若PD∥平面EAC,求三棱锥P-EAD的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面有五个命题:
①函数的最小正周期是;
②终边在轴上的角的集合是;
③在同一坐标系中,函数的图象和函数的图象有三个公共点;
④把函数的图象向右平移个单位得到的图象;
⑤函数在上是减函数;
其中真命题的序号是( )
A.①②⑤B.①④C.③⑤D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数,给出以下四个命题:(1)当时,单调递减且没有最值;(2)方程一定有实数解;(3)如果方程(为常数)有解,则解得个数一定是偶数;(4)是偶函数且有最小值.其中假命题的序号是____________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于函数的对称性有如下结论:对于给定的函数,如果对于任意的都有成立为常数),则函数关于点对称.
(1)用题设中的结论证明:函数关于点;
(2)若函数既关于点对称,又关于点对称,且当时,,求:①的值;
②当时,的表达式.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com