精英家教网 > 高中数学 > 题目详情
12.已知抛物线C:x2=2py(p>0)的焦点为F,抛物线上一点A的横坐标为x1(x1>0),过点A作抛物线C的切线
l1交x轴于点D,交y轴于点Q,当|FD|=2时,∠AFD=60°.
(1)求证:FD垂直平分AQ,并求出抛物线C的方程;
(2)若B位于y轴左侧的抛物线C上,过点B作抛物线C的切线l2交直线l1于点P,AB交y轴于点(0,m),若∠APB为锐角,求m的取值范围.

分析 (1)设A(x1,y1),求出切线AD的方程,推出|PQ|,通过|FD|=2时,∠AFD=60°求出p=2,抛物线方程.
(2)设B(x2,y2)(x2<0)则B处的切线方程为$y=\frac{x_2}{2}x-\frac{x_2^2}{4}$,联立直线椭圆方程组,求出P的坐标;
法一:利用∠APB为锐角,数量积大于0,直线AB过(0,m),推出m的取值范围.
法二:令y=kx+m,联立$\left\{\begin{array}{l}{x^2}=4y\\ y=kx+m\end{array}\right.$借助韦达定理,数量积的关系,推出$\left\{\begin{array}{l}m-1>0\\ 4{m^2}-4m>0\end{array}\right.⇒m>1$

解答 解:(1)设A(x1,y1),则切线AD的方程为:y=$\frac{{x}_{1}}{p}x-\frac{{{x}_{1}}^{2}}{2p}$,
所以D($\frac{{x}_{1}}{2},0$),Q(0,-y1);|PQ|=$\frac{P}{2}+{y}_{1}$,$|{FA}|=\frac{p}{2}+{y_1}$,
所以|FQ|=|FA|,
且D为AQ中点,所以DF⊥AQ,
∵|DF|=2,∠AFD=60°,
∴$∠QFD={60°},\frac{p}{2}=1$,得p=2,
抛物线方程为x2=4y
(2)设B(x2,y2)(x2<0)则B处的切线方程为$y=\frac{x_2}{2}x-\frac{x_2^2}{4}$
由$\left\{\begin{array}{l}y=\frac{x_1}{2}x-\frac{x_1^2}{4}\\ y=\frac{x_2}{2}x-\frac{x_2^2}{4}\end{array}\right.⇒p(\frac{{{x_1}+{x_2}}}{2},\frac{{{x_1}{x_2}}}{4})$,
法一:$\overrightarrow{PA}=(\frac{{{x_1}-{x_2}}}{2},\frac{{{x_1}({x_1}-{x_2})}}{4}),\overrightarrow{PB}=(\frac{{{x_2}-{x_1}}}{2},\frac{{{x_2}({x_2}-{x_1})}}{4})$,
∵∠APB为锐角,∴$\overrightarrow{PA}•\overrightarrow{PB}=-\frac{{{{({x_1}-{x_2})}^2}}}{4}-\frac{{{x_1}{x_2}{{({x_1}-{x_2})}^2}}}{16}>0⇒{x_1}{x_2}<-4$
直线AB:$y-\frac{x_1^2}{4}=\frac{{\frac{x_1^2}{4}-\frac{x_2^2}{4}}}{{{x_1}-{x_2}}}(x\right.\left.{-{x_1}})⇒y-\frac{x_1^2}{4}=\frac{{{x_1}+{x_2}}}{4}(x-{x_1})$
将(0,m)代入的$m=-\frac{{{x_1}{x_2}}}{4}>1$,∴m的取值范围为(1,+∞).
法二:令y=kx+m,由$\left\{\begin{array}{l}{x^2}=4y\\ y=kx+m\end{array}\right.$得x2-4kx-4m=0x1+x2=4k,x1x2=-4m
∴$P(2k,-m),\overrightarrow{PA}=({x_1}-2k,{y_1}+m),\overrightarrow{PB}=({x_2}-2k,{y_2}+m)$
∴$\overrightarrow{PA}•\overrightarrow{PB}=({x_1}-2k)({x_2}-2k)+({y_1}+m)({y_2}+m)=(1+{k^2}){x_1}{x_2}$+(2km-2k)(x1+x2)+4k2+4m2=4(m-1)k2+4m2-4m>0对任意k恒成立.
∴$\left\{\begin{array}{l}m-1>0\\ 4{m^2}-4m>0\end{array}\right.⇒m>1$

点评 本题考查抛物线的标准方程的求法,直线与抛物线的位置关系的综合应用,斜率的数量积的应用,考查转化思想与分析问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.动圆C经过定点F(2,0)且与直线x+2=0相切,则动圆的圆心C的轨迹方程是(  )
A.x=2B.y=2C.y2=8xD.x2=8y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知n为正整数,在${(1-\sqrt{x})^{2n}}$与(1+x)n展开式中x2项的系数相同,则n=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=x2+ax+2;
(1)当a=-1时,求函数f(x)的单调区间.
(2)若函数f(x)在[-5,5]上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.P是椭圆$\frac{x^2}{4}+\frac{y^2}{2}=1$上的一点,F1、F2分别是左右焦点,若|PF1|=3|PF2|,则过点P的椭圆的切线的斜率是(  )
A.$±\sqrt{2}$B.$±\frac{{\sqrt{2}}}{3}$C.$±\frac{{\sqrt{2}}}{4}$D.$±\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.高为$\sqrt{2}$的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,SA⊥面ABCD,则底面ABCD的中心与顶点S之间的距离为(  )
A.$\frac{\sqrt{10}}{2}$B.$\frac{\sqrt{2}+\sqrt{3}}{2}$C.$\frac{3}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若3a+4b=ab,a>0且b>0,则a+b的最小值是(  )
A.$6+2\sqrt{3}$B.$7+2\sqrt{3}$C.$6+4\sqrt{3}$D.$7+4\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是偶函数又是(0,+∞)上单调递减的函数是(  )
A.$y=\frac{1}{x}$B.y=x3C.y=|x|D.$y={(\frac{{\sqrt{2}}}{2})^{|x|}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知全集U中有25个元素,集合A中有12个元素,集合B中有17个元素,A∩B中有8个元素,则∁UA∩∁UB中元素的个数是4.

查看答案和解析>>

同步练习册答案