精英家教网 > 高中数学 > 题目详情

【题目】已知函数对一切实数都有成立,且.

(1)的值;

(2)的解析式,并用定义法证明单调递增;

(3)已知,设P,不等式恒成立,Q:时,是单调函数。如果满足P成立的的集合记为A,满足Q成立的集合记为B,求(R为全集)。

【答案】(1)(2),证明见解析(3)

【解析】

1,由条件,结合f1)=0,即可得到f0);

2)令y0,结合f0),即可求出fx)的解析式,利用定义证明函数的单调性;

3)化简不等式fx+32x+a,得到x2x+1a,求出左边的范围,由恒成立得到a的范围;由二次函数的单调性,即可得到集合B,从而求出ARB

解:(1)令则有,又

2)令

任取

,则单调递增。

3)由P成立得时,

是单调函数,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图所示,等腰梯形ABCD的底角A等于60°.直角梯形ADEF所在的平面垂直于平面 ABCD,∠EDA=90°,且ED=AD=2AF=2AB=2.

(Ⅰ)证明:平面ABE⊥平面EBD;
(Ⅱ)点M在线段EF上,试确定点M的位置,使平面MAB与平面ECD所成的角的余弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AA1=AC=2BC,ACB=90°.

Ⅰ)求证:AC1A1B;

Ⅱ)求直线AB与平面A1BC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图长方体中,分别为棱的中点

(1)求证:平面平面

(2)请在答题卡图形中画出直线与平面的交点(保留必要的辅助线),写出画法并计算的值(不必写出计算过程).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年高考成绩揭晓,某高中再创辉煌,考后学校对于单科成绩逐个进行分析:现对甲、乙两个文科班的数学成绩进行分析,规定:大于等于135分为优秀,135分以下为非优秀,成绩统计后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

(1)请完成上面的列联表;

(2)请问:是否有75%的把握认为“数学成绩与所在的班级有关系”?

(3)用分层抽样的方法从甲、乙两个文科班的数学成绩优秀的学生中抽取5名学生进行调研,然后再从这5名学生中随机抽取2名学生进行谈话,求抽到的2名学生中至少有1名乙班学生的概率.

参考公式:(其中

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分分)

已知圆,过点作直线交圆两点.

)当经过圆心时,求直线的方程.

)当直线的倾斜角为时,求弦的长.

)求直线被圆截得的弦长时,求以线段为直径的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,直线l的极坐标方程为ρcos(θ+ )=1.以极点O为原点,极轴为x轴的正半轴建立平面直角坐标系,圆C的参数方程为 (θ为参数).若直线l与圆C相切,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一元二次函数

1)写出该函数的顶点坐标;

2)如果该函数在区间上的最小值为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,若对任意,存在,,则实数的取值范围为_____.

查看答案和解析>>

同步练习册答案