精英家教网 > 高中数学 > 题目详情

【题目】若圆经过点(2,0),(0,4),(0,2)求:
(1)圆的方程
(2)圆的圆心和半径.

【答案】
(1)解:设圆的一般式为x2+y2+Dx+Ey+F=0,

将已知三点代入方程得:

解得

所以圆的方程为x2+y2﹣6x﹣6y+8=0


(2)解:因为圆的方程为x2+y2﹣6x﹣6y+8=0,

所以﹣ =3,﹣ =3,

即圆心坐标为(3,3);

所以圆的半径为:

r= = =


【解析】(1)设出圆的一般式,把三点坐标代入方程即可求出圆的方程;(2)利用圆的方程求出圆心与半径即可.
【考点精析】关于本题考查的圆的一般方程,需要了解圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】双流中学2016年高中毕业的大一学生假期参加社会实践活动,为提高某套丛书的销量,准备举办一场展销会,据市场调查,当每套丛书售价定为元时,销售量可达到万套,现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10,假设不计其他成本,即销售每套丛书的利润=售价供货价格.问:

(1)每套丛书售价定为100元时,书商所获得的总利润是多少万元?

(2)每套丛书售价定为多少元时,单套丛书的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,且满足 acosC﹣csinA=0.
(1)求角C的大小;
(2)已知b=4,△ABC的面积为6 ,求边长c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如下图,则该几何体的体积为( )

A. 18 B. 20 C. 24 D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+ax+6.
(1)当a=5时,解不等式f(x)<0;
(2)若不等式f(x)>0的解集为R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(x﹣φ),且 f(x)dx=0,则函数f(x)的图象的一条对称轴是(
A.x=
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C: (a>b>0).称圆心在原点O,半径为 的圆是椭圆C的“准圆”.若椭圆C的一个焦点为F( ,0),其短轴上的一个端点到点F的距离为
(1)求椭圆C的方程和其“准圆”方程;
(2)点P是椭圆C的“准圆”上的一个动点,过动点P作直线l1 , l2 , 使得l1 , l2与椭圆C都只有一个交点,试判断l1 , l2是否垂直,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(I)讨论函数的单调性,并证明当时, ;

(Ⅱ)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产的产品在出厂前都要做质量检测,每件一等品都能通过检测,每件二等品通过检测的概率为.现有件产品,其中件是一等品, 件是二等品.

(Ⅰ)随机选取件产品,设至少有一件通过检测为事件,求事件的概率;

(Ⅱ)随机选取件产品,其中一等品的件数记为,求的分布列及数学期望.

查看答案和解析>>

同步练习册答案