精英家教网 > 高中数学 > 题目详情
7.设向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,4),若$\overrightarrow a$∥$\overrightarrow b$,则实数m的值是(  )
A.2B.-2C.0D.-2或2

分析 直接利用向量平行的充要条件列出方程求解即可.

解答 解:∵向量$\overrightarrow a$=(1,m),$\overrightarrow b$=(m,4),$\overrightarrow a$∥$\overrightarrow b$,
∴1×4=m2
解得m=±2,
故选:D.

点评 本题考查向量的平行的充要条件,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知向量$\overrightarrow{OA}$=(λcosα,λsinα)(λ≠0),$\overrightarrow{OB}$=(-sinβ,cosβ),其中O为坐标原点.
(1)若α-β=$\frac{π}{6}$,且λ<0,求向量$\overrightarrow{OA}$与$\overrightarrow{OB}$的夹角;
(2)若|$\overrightarrow{AB}$|≥2|$\overrightarrow{OB}$|对于任意实数α,β都成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.现有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上的数字,差为负数的概率为(  )
A.$\frac{1}{3}$B.$\frac{4}{9}$C.$\frac{5}{9}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知△ABC顶点的直角坐标分别为A(3,4),B(0,0),C(c,0)
(1)若$\overrightarrow{AB}•\overrightarrow{AC}=0$,求c的值;
(2)若c=5,求cos∠A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.江苏高考新方案采用“3+3”模式,语数外三门必考,然后在物理、化学、生物、历史、政治、地理六门学科中任选三门进行测试,现有甲、乙、丙三人进行模拟选择:甲的物理非常优秀,所以甲必要选择物理,其余两门随机选择;乙的政治比较薄弱,所以乙一定不选政治,其余随机选择;丙的各门成绩比较平均,所以丙随机选择三门.
(1)则甲、乙、丙三人分别有多少种选择方法;
(2)三人中恰有2人选择物理的概率;
(3)随机变量ε表示三人中选择物理的人数,写出ε的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知某几何体的俯视图是如图所示的正方形,正视图和侧视图都是底面边长为6,高为4的等腰三角形.
(1)求该几何体的体积V;
(2)求该几何体的表面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从进入决赛的6名选手中决出1名一等奖,2名二等奖,3名三等奖,则可能的决赛结果共有(  )种.
A.30B.48C.54D.60

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.命题“?x∈R,x2≠-1”的否定是(  )
A.?x∉R,x2=-1B.?x∈R,x2=-1C.?x∉R,x2=-1D.?x∈R,x2=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知F1、F2为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点,过F2作垂直于x轴的直线交双曲线于点P,且∠PF1F2=30°.求:
(1)双曲线的离心率;
(2)双曲线的渐近线方程.

查看答案和解析>>

同步练习册答案