精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中.

(Ⅰ)讨论的单调性;

(Ⅱ)当时,证明:

(Ⅲ)求证:对任意正整数,都有 (其中为自然对数的底数).

【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)见解析

【解析】

)先求,再对 进行讨论即可.

)由题知即证,构造新函数设,利用导数只需即得证.

)由(Ⅱ)知,累加作和即得证.

)易得,函数

①当时,,所以上单调递增

②当时,令,解得

时,,所以

所以上单调递减;

时,,所以

所以上单调递增.

综上,当时,函数上单调递增;

时,函数上单调递减,在上单调递增.

)当 时,.

要证明

即证,即. .

得,.

时,

时,.

所以为极大值点,也为最大值点

所以.

.

.

)由()知,.

所以

,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为迎接五一节的到来,某单位举行庆五一,展风采的活动.现有6人参加其中的一个节目,该节目由两个环节可供参加者选择,为增加趣味性,该单位用电脑制作了一个选择方案:按下电脑键盘Enter键则会出现模拟抛两枚质地均匀骰子的画面,若干秒后在屏幕上出现两个点数,并在屏幕的下方计算出的值.现规定:每个人去按Enter键,当显示出来的小于时则参加环节,否则参加环节.

1)求这6人中恰有2人参加该节目环节的概率;

2)用分别表示这6个人中去参加该节目两个环节的人数,记,求随机变量的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设圆x2y2+2x-15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆ACD两点,过BAC的平行线交AD于点E.

(1)证明|EA|+|EB|为定值,并写出点E的轨迹方程;

(2)设点E的轨迹为曲线C1,直线lC1MN两点,过B且与l垂直的直线与圆A交于PQ两点,求四边形MPNQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某景区的各景点从2009年取消门票实行免费开放后,旅游的人数不断地增加,不仅带动了该市淡季的旅游,而且优化了旅游产业的结构,促进了该市旅游向观光、休闲、会展三轮驱动的理想结构快速转变.下表是从2009年至2018年,该景点的旅游人数(万人)与年份的数据:

1

2

3

4

5

6

7

8

9

10

旅游人数(万人)

300

283

321

345

372

435

486

527

622

800

该景点为了预测2021年的旅游人数,建立了的两个回归模型:

模型①:由最小二乘法公式求得的线性回归方程

模型②:由散点图的样本点分布,可以认为样本点集中在曲线的附近.

1)根据表中数据,求模型②的回归方程.(精确到个位,精确到001).

2)根据下列表中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测2021年该景区的旅游人数(单位:万人,精确到个位).

回归方程

30407

14607

参考公式、参考数据及说明:

①对于一组数据,其回归直线的斜率和截距的最小二乘法估计分别为.②刻画回归效果的相关指数;③参考数据:

55

449

605

83

4195

900

表中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间,我国高速公路继续执行节假日高速公路免费政策某路桥公司为掌握春节期间车辆出行的高峰情况,在某高速公路收费点记录了大年初三上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费点,它们通过该收费点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作区间9:40~10:00记作10:00~10:20记作10:20~10:40记作.例如:1004分,记作时刻64.

1)估计这600辆车在9:20~10:40时间段内通过该收费点的时刻的平均值(同一组中的数据用该组区间的中点值代表);

2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车中随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列与数学期望;

3)由大数据分析可知,车辆在每天通过该收费点的时刻T服从正态分布,其中可用这600辆车在9:20~10:40之间通过该收费点的时刻的平均值近似代替,可用样本的方差近似代替(同一组中的数据用该组区间的中点值代表),已知大年初五全天共有1000辆车通过该收费点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).

参考数据:若,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设△ABC的内角ABC所对的边长分别为abc,且满足a2c2b2ac.

(1)求角B的大小;

(2)若2bcos A(ccosAacosC),BC边上的中线AM的长为,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,求函数的最大值;

(2)令,讨论函数的单调区间;

(3)若,正实数满足,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数f(x),若存在区间A=[mn],使得{y|yf(x),xA}=A,则称函数f(x)为“同域函数”,区间A为函数f(x)的一个“同域区间”.给出下列四个函数:

;②f(x)=x2-1;③f(x)=|2x-1|;④f(x)=log2(x-1).

存在“同域区间”的“同域函数”的序号是__________.(请写出所有正确结论的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2axx2-3ln x,其中a∈R,为常数.

(1)若f(x)在x∈[1,+∞)上是减函数,求实数a的取值范围;

(2)若x=3是f(x)的极值点,求f(x)在x∈[1,a]上的最大值.

查看答案和解析>>

同步练习册答案