精英家教网 > 高中数学 > 题目详情

【题目】设椭圆 =1(a>b>0)的左焦点为F,离心率为 ,过点F且与x轴垂直的直线被椭圆截得的线段长为
(1)求椭圆的方程;
(2)设A,B分别为椭圆的左,右顶点,过点F且斜率为k的直线与椭圆交于C,D两点.若 =8,求k的值.

【答案】
(1)解:根据椭圆方程为

∵过焦点且垂直于x轴的直线被椭圆截得的线段长为

∴当x=﹣c时, ,得y=±

=

∵离心率为 ,∴ =

解得b= ,c=1,a=

∴椭圆的方程为


(2)解:直线CD:y=k(x+1),

设C(x1,y1),D(x2,y2),

消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,

∴x1+x2=﹣ ,x1x2= ,又A(﹣ ,0),B( ,0),

=(x1+ ,y1)( ﹣x2.﹣y2)+(x2+ ,y2)( ﹣x1.﹣y1),

=6﹣(2+2k2)x1x2﹣2k2(x1+x2)﹣2k2

=6+ =8,解得k=


【解析】(1)先根据椭圆方程的一般形式,令x=c代入求出弦长使其等于 ,再由离心率为 ,可求出a,b,c的关系,进而得到椭圆的方程.(2)直线CD:y=k(x+1),设C(x1 , y1),D(x2 , y2),由 消去y得,(2+3k2)x2+6k2x+3k2﹣6=0,再由韦达定理进行求解.求得 ,利用 =8,即可求得k的值.
【考点精析】利用一般式方程和椭圆的标准方程对题目进行判断即可得到答案,需要熟知直线的一般式方程:关于的二元一次方程(A,B不同时为0);椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)满足:对任意x∈(0,+∞),恒有f(2x)=2f(x)成立;当x∈(1,2]时,f(x)=2﹣x.若f(a)=f(2020),则满足条件的最小的正实数a的值为(  )

A. 28 B. 100 C. 34 D. 36

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)△ABC的内角A,B,C所对的边分别为a,b,c.向量平行.
(1)求A。
(2)若a=, b=2求△ABC的面积。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·湖南)设,且,证明
(1)
(2)不可能同时成立

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若将函数y=2sin 2x的图像向左平移 个单位长度,则评议后图象的对称轴为( )
A.x= (k∈Z)
B.x= + (k∈Z)
C.x= (k∈Z)
D.x= + (k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体 在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图 如图所示,用一个与该几何体的下底面平行相距为 h(0<h<2) 的平面截该几何体,则截面面积为 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已成椭圆 的左右顶点分别为 ,上下顶点分别为 ,左右焦点分别为 ,其中长轴长为4,且圆 为菱形 的内切圆.
(1)求椭圆 的方程;
(2)点 轴正半轴上一点,过点 作椭圆 的切线 ,记右焦点 上的射影为 ,若 的面积不小于 ,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在考试测评中,常用难度曲线图来检测题目的质量,一般来说,全卷得分高的学生,在某道题目上的答对率也应较高,如果是某次数学测试压轴题的第1、2问得分难度曲线图,第1、2问满分均为6分,图中横坐标为分数段,纵坐标为该分数段的全体考生在第1、2问的平均难度,则下列说法正确的是(
A.此题没有考生得12分
B.此题第1问比第2问更能区分学生数学成绩的好与坏
C.分数在[40,50)的考生此大题的平均得分大约为4.8分
D.全体考生第1问的得分标准差小于第2问的得分标准差

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的离心率为 ,M为C上除长轴顶点外的一动点,以M为圆心, 为半径作圆,过原点O作圆M的两条切线,A、B为切点,当M为短轴顶点时∠AOB= . (Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的右焦点为F,过点F作MF的垂线交直线x= a于N点,判断直线MN与椭圆的位置关系.

查看答案和解析>>

同步练习册答案